Last year, 2020, was the one of the Circular Economy, a model that is increasingly gaining ground among the countries of the European Union, determined to implement a new agenda of ad hoc measures to safeguard the planet from all the waste in which we are drowning, due to various factors such as population growth, lack of raw materials and the evolution of production processes. The Circular Economy, defined as the fourth industrial revolution together with Industry 4.0, provides five fundamental principles for the definition of a new regenerative economy. The first principle is to deliver the product as a service, in fact if before the purchase of a product meant taking charge of its total management, including economic and financial risks, with the inclusion of the circular economy, companies offer the product and service necessary to keep it in use during all phases of the object's life: design, use, maintenance, reuse, regeneration, up to recycling. The second fundamental principle is obviously the use of sustainable and innovative materials, followed by the third cornerstone which is the one of sharing property and therefore sharing economy. The fourth concept underlying the circular economy is product regeneration, or the reintegration into the production cycle of the maximum amount of matter and material, thought as minor components of the whole and used to create a a final product which has reached the end of its life cycle. Fifth and last fundamental point is undoubtedly the need to aim for longer product life cycles. A technology that lends itself fully to the concept of circular economy is undoubtedly the additive manufacturing, or as typically named, 3D printing. If exploited, 3D printing makes possible to get the production cycle totally circular because once the product has reached the end of its life cycle, it can be recovered, transformed back into raw material and used to re-power the 3D printer. The production process thus passes from a totally linear concept that begins with design, subsequent production, use, abandonment and then disposal to an idea where the subsequent part of use becomes reuse or repair, collection and then recycling. In light of all this, I decided to introduce myself to the world of 3D printing and in particular I wanted, in my small way, to confirm the possibility of reusing material to support the concept of circular economy. The material under investigation was acrylonitrile-butadiene-styrene or more commonly called ABS which is a common thermoplastic polymer widely used in production, mainly for rigid and light objects. The 3D printer, available in the laboratory of the mechanics department of Politecnico di Milano, is powered mainly by powders, pellets or more generally by granules of irregular dimensions, but in any case less than 5-6 mm. In concrete terms, the work carried out was to print some specimens of this material, initially virgin natural ABS and subsequent tensile tests to obtain a mechanical characterization of the polymer. The same path, so 3D printing and mechanical characterization, was used to evaluate the material, this time recycled and therefore in its second life cycle. A third life cycle of the polymer was simulated by exposing the latter material to UV light radiation in order to activate a faster degradation in the laboratory equivalent to a real exposure time longer than that available to carry out the tests. The specimens obtained from the printing of irradiated material were also subjected to mechanical characterization tests and the properties of the different sets of material were compared to evaluate the trends of the main strength values of the polymer along its life cycles. This process was also partly carried out for the printing of carbon fiber reinforced ABS specimens. It was not possible to completely conclude the tests on this material because the characteristics of the 3D printer in use did not allow an optimal printing of the specimens, therefore it was concluded that the material, ABS, loaded with carbon fiber and this particular printer are not compatible. However, it remains possible to recycle and print this reinforced polymer, as has been demonstrated at the same time through the use of a printer with different characteristics, mainly from a geometric point of view, in a separate laboratory of the Polytechnic. Finally, I can say that the results obtained are certainly encouraging, since it has been shown that the material maintains on average its original characteristics even if reprinted, therefore in favor of a complete reuse of this polymer in a circular perspective.
Il 2020 è stato l’anno dell’Economia Circolare, un modello che sta prendendo sempre più piede tra i Paesi dell’Unione Europea, decisi ad attuare una nuova agenda di misure ad hoc per salvaguardare il pianeta da tutti quei rifiuti nei quali stiamo affogando, a causa di vari fattori come l’aumento della popolazione, mancanza di materie prime e dell’evoluzione dei processi produttivi. L’Economia Circolare, definita come la quarta rivoluzione industriale assieme all’Industry 4.0, prevede cinque principi fondamentali per la definizione di una nuova economia rigenerativa. Il primo principio è quello di far passare il prodotto come servizio, infatti se prima l’acquisto di un prodotto significava prendersi in carico la sua totale gestione, compresi i rischi economici e finanziari, con l’inserimento dell’economia circolare le imprese offrono il prodotto ed il servizio necessari per mantenerlo in uso durante tutte le fasi di vita dell’oggetto: progettazione, utilizzo, manutenzione, riutilizzo, rigenerazione, fino al riciclo. 7 Secondo principio fondamentale è ovviamente l’utilizzo di materiali sostenibili ed innovativi, seguito dal terzo cardine che è quello della condivisione di proprietà e quindi sharing economy. Quarto concetto alla base dell’economia circolare è la rigenerazione del prodotto, ovvero il reintegro nel ciclo di produzione della quantità massima di materia e materiale utilizzato per la creazione di un prodotto ed arrivato alla fine del suo ciclo di vita. Quinto ed ultimo punto fondamentale è senza dubbio il bisogno di puntare a cicli di vita dei prodotti sempre più lunghi. Una tecnologia che si presta a pieno al concetto di economia circolare è senza dubbio la produzione additiva del prodotto, in particolar modo la stampa 3D. Se sfruttata, la stampa 3D permette di rendere il ciclo di produzione totalmente circolare poiché una volta giunti alla fine del ciclo di vita del prodotto, quest’ultimo può essere recuperato, ritrasformato in materia prima ed utilizzato per rialimentare la stampante 3D. Il processo produttivo passa così da un concetto totalmente lineare che inizia con la progettazione, successiva produzione, utilizzo, abbandono e quindi smaltimento ad un’idea dove la parte successiva all’utilizzo diventa riuso o riparazione, raccolta e quindi riciclo. Alla luce di tutto ciò ho deciso introdurmi al mondo della stampa 3D ed in particolare ho voluto, nel mio piccolo, confermare la possibilità di riutilizzo di materiale al supporto del concetto di economia circolare. Il materiale sotto investigazione è stato acrilonitrile-butadiene-stirene o più comunemente chiamato ABS il quale è un comune polimero termoplastico molto utilizzato nella realtà produttiva, principalmente per oggetti rigidi e leggeri. La stampante 3D, a disposizione nel laboratorio del dipartimento di meccanica del Politecnico di Milano, viene alimentata principalmente da polveri, pellet o più in generale da granuli di dimensioni anche non regolari, ma comunque inferiori ai 5-6 mm. Concretamente, il lavoro svolto è stato quello di stampare alcuni provini di questo materiale, inizialmente ABS naturale vergine e successive prove di trazione per ottenere una caratterizzazione meccanica del polimero. Lo stesso percorso, quindi stampa 3D e caratterizzazione meccanica, è stato utilizzato per valutare il materiale, questa volta riciclato e quindi al suo secondo ciclo di vita. Un terzo ciclo di vita del polimero è stato simulato mediante l’esposizione di quest’ultimo materiale alla radiazione di luce UV in modo da attivare un degrado velocizzato in laboratorio equivalente ad un tempo di esposizione reale più lungo di quello a disposizione per realizzare le prove. I provini ottenuti dalla stampa di materiale irradiato sono stati anch’essi sottoposti a prove di caratterizzazione meccanica e le proprietà dei diversi set di materiale sono stati messi a confronto per valutare gli andamenti dei principali valori resistenziali del polimero lungo i suoi cicli di vita. Questo processo è stato eseguito in parte anche per la stampa di provini in ABS rinforzato con fibre di carbonio. Non è stato possibile concludere del tutto le prove su questo materiale poiché le caratteristiche della stampante 3D in uso non permetteva una stampa ottimale dei provini, perciò è stato concluso che il materiale caricato con fibra di carbonio e questa particolare stampante non sono compatibili. Rimane comunque la possibilità di riciclare e stampare questo polimero rinforzato, come è stato dimostrato allo stesso tempo attraverso l’utilizzo di una stampante con caratteristiche diverse, principalmente dal punto di vista geometrico, in un laboratorio distaccato del Politecnico. Infine, posso affermare che i risultati ottenuti sono sicuramente incoraggianti, poiché è stato dimostrato che il materiale mantiene mediamente le sue caratteristiche originali anche se ristampato, a favore quindi di un completo riutilizzo di questo polimero in prospettiva circolare.
Sustainable additive manufacturing : mechanical response of 3D printed recycled ABS
Halo, Jurgen
2020/2021
Abstract
Last year, 2020, was the one of the Circular Economy, a model that is increasingly gaining ground among the countries of the European Union, determined to implement a new agenda of ad hoc measures to safeguard the planet from all the waste in which we are drowning, due to various factors such as population growth, lack of raw materials and the evolution of production processes. The Circular Economy, defined as the fourth industrial revolution together with Industry 4.0, provides five fundamental principles for the definition of a new regenerative economy. The first principle is to deliver the product as a service, in fact if before the purchase of a product meant taking charge of its total management, including economic and financial risks, with the inclusion of the circular economy, companies offer the product and service necessary to keep it in use during all phases of the object's life: design, use, maintenance, reuse, regeneration, up to recycling. The second fundamental principle is obviously the use of sustainable and innovative materials, followed by the third cornerstone which is the one of sharing property and therefore sharing economy. The fourth concept underlying the circular economy is product regeneration, or the reintegration into the production cycle of the maximum amount of matter and material, thought as minor components of the whole and used to create a a final product which has reached the end of its life cycle. Fifth and last fundamental point is undoubtedly the need to aim for longer product life cycles. A technology that lends itself fully to the concept of circular economy is undoubtedly the additive manufacturing, or as typically named, 3D printing. If exploited, 3D printing makes possible to get the production cycle totally circular because once the product has reached the end of its life cycle, it can be recovered, transformed back into raw material and used to re-power the 3D printer. The production process thus passes from a totally linear concept that begins with design, subsequent production, use, abandonment and then disposal to an idea where the subsequent part of use becomes reuse or repair, collection and then recycling. In light of all this, I decided to introduce myself to the world of 3D printing and in particular I wanted, in my small way, to confirm the possibility of reusing material to support the concept of circular economy. The material under investigation was acrylonitrile-butadiene-styrene or more commonly called ABS which is a common thermoplastic polymer widely used in production, mainly for rigid and light objects. The 3D printer, available in the laboratory of the mechanics department of Politecnico di Milano, is powered mainly by powders, pellets or more generally by granules of irregular dimensions, but in any case less than 5-6 mm. In concrete terms, the work carried out was to print some specimens of this material, initially virgin natural ABS and subsequent tensile tests to obtain a mechanical characterization of the polymer. The same path, so 3D printing and mechanical characterization, was used to evaluate the material, this time recycled and therefore in its second life cycle. A third life cycle of the polymer was simulated by exposing the latter material to UV light radiation in order to activate a faster degradation in the laboratory equivalent to a real exposure time longer than that available to carry out the tests. The specimens obtained from the printing of irradiated material were also subjected to mechanical characterization tests and the properties of the different sets of material were compared to evaluate the trends of the main strength values of the polymer along its life cycles. This process was also partly carried out for the printing of carbon fiber reinforced ABS specimens. It was not possible to completely conclude the tests on this material because the characteristics of the 3D printer in use did not allow an optimal printing of the specimens, therefore it was concluded that the material, ABS, loaded with carbon fiber and this particular printer are not compatible. However, it remains possible to recycle and print this reinforced polymer, as has been demonstrated at the same time through the use of a printer with different characteristics, mainly from a geometric point of view, in a separate laboratory of the Polytechnic. Finally, I can say that the results obtained are certainly encouraging, since it has been shown that the material maintains on average its original characteristics even if reprinted, therefore in favor of a complete reuse of this polymer in a circular perspective.File | Dimensione | Formato | |
---|---|---|---|
Thesis__Jurgen_Halo_.pdf
accessibile in internet per tutti
Descrizione: Master's thesis Jurgen Halo
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177708