Nanoparticles, showing capabilities to improve the mechanical performance and provide multifunctional properties, can be regarded as the ideal reinforcements for composite materials. The combination of composite materials and nanoparticles would widen the potential applications of composites in industrial fields, especially when extreme loading conditions are considered. However, their size poses several challenges. Modelling the effect of nanoparticles in composites materials requires investigations at different scales. In order to comprehensively understand the effect of nanoparticles on the physical and mechanical properties of composite materials, a multiscale virtual design approach may be an efficient methodology in a numerical framework. Aim of this thesis was to investigate the effect of nanoparticles, with a special focus on the mechanical properties, while also considering their electrical conductivity, and to develop virtual design methodologies for further applications of nanocomposites under complex loading conditions, like impact cases. Based on experimental activities, the thesis developed numerical methodologies in a multiscale framework to study the effect of nanoparticles on polymers and woven composites by modelling the mechanical and electrical behaviours of nanocomposites and related neat composites. Three main research lines were followed in the thesis: nanoparticles in polymer materials, nanoparticles in woven composites and multifunctional properties of nanocomposites. In order to understand the effect of nanoparticles on the mechanical behaviour of materials, neat and nanoparticle-reinforced polymer were initially considered. The numerical investigation was firstly focused on tensile and fracture behaviours of neat polymer, while the capabilities related meshfree modelling methodologies were compared. It was verified that Mode-I fracture properties are mainly driven by tensile properties. However, further numerical work uncovered the existence of different damage and competing failure mechanisms through comparing nanoparticle-reinforced polymers with neat polymers, and it was found that the bridging of carbon nanotubes can increase the fracture resistance, while defects caused by nanoparticles may affect tensile properties. Based on these achievements, a modified peridynamic method was then proposed with constrained material points to replicate the effect of nanoparticles in polymer materials instead of creating their real geometries. This approach bridges different scales in the modelling process and allows to achieve efficient but very realistic mechanical simulations at macroscale. Subsequently, the reinforcement of nanoparticles on fibre-reinforced composites were investigated, and reliable numerical modelling strategies, validated by experiments, were developed. Considering various scenarios during the service of composites (including impact events), a characterization of the mechanical properties under static and dynamic (high strain rates) conditions is needed. However, large variability in the manufacturing process would require a specific and large test campaign. In order to reduce experimental efforts, a numerical modelling approach, able to assist in defining the mechanical properties of a generic composite starting from the data of the constituents under various strain rates, was developed for woven composites. The method was validated in a relevant environment, exploiting the material data in replicating ballistic tests with respects to the residual velocity and damage morphology. Furthermore, uncertainties in the fibre architecture were also investigated on neat woven composites by means of a multiscale modelling. Resulting from both works on neat woven composites, a numerical method coupled with a theoretical model was developed for the reproduction of the behaviour of nanoparticle-reinforced woven composites under low-velocity impacts. Moreover, the electric conductivity, provided by tunnelling effects from carbon nanotubes, attracted attentions in experiments. This effect can be potentially applied for structural health monitoring. Through measuring the electric conductivity during the tensile and fracture tests, the presence of damage/cracks on the samples was correlated with the changes in conductivity. In addition, considering that the quantification of nanoparticle distributions inside materials still remains a challenge in the field of nanocomposites, the electric properties were inversely used to determine the distribution of nanoparticles. In conclusion, the thesis explored the effect of nanoparticles on the mechanical and multifunctional properties of composite materials enriched with nanoparticles. A comprehensive investigation was carried out including both experimental and numerical works, considering multiple scales and the uncertainty of materials. Furthermore, the related numerical works paves the way for the development and boost of design by analysis methods of such kinds of materials even in a very harsh and extreme loading environment.
Le nanoparticelle, che mostrano capacità di migliorare le prestazioni meccaniche e fornire proprietà multifunzionali, possono essere considerate i rinforzi ideali per i materiali compositi. La combinazione di materiali compositi e nanoparticelle amplierebbe le potenziali applicazioni dei compositi nei settori industriali, soprattutto quando si considerano condizioni di carico estreme. Tuttavia, la loro dimensione pone diverse sfide. La modellazione dell'effetto delle nanoparticelle nei materiali compositi richiede indagini su scale diverse. Al fine di comprendere in modo completo l'effetto delle nanoparticelle sulle proprietà fisiche e meccaniche dei materiali compositi, un approccio di progettazione virtuale multiscala può essere una metodologia efficiente in un ambiente numerico. Scopo di questa tesi era studiare l'effetto delle nanoparticelle, con particolare attenzione alle proprietà meccaniche, considerando anche la loro conducibilità elettrica, e sviluppare metodologie di progettazione virtuale per ulteriori applicazioni di nanocompositi in condizioni di carico complesse, come i casi di impatto. Sulla base di attività sperimentali, la tesi ha sviluppato metodologie numeriche attraverso un approccio multiscala per studiare l'effetto delle nanoparticelle su polimeri e compositi modellando i comportamenti meccanici ed elettrici dei nanocompositi e dei relativi compositi privi di nanoparticelle. Nella tesi sono state seguite tre linee di ricerca principali: nanoparticelle in materiali polimerici, nanoparticelle in compositi tessuti e proprietà multifunzionali dei nanocompositi. Per comprendere l'effetto delle nanoparticelle sul comportamento meccanico dei materiali, sono stati inizialmente considerati sia polimeri privi di nanoparticelle che rinforzati con le medesime. L'indagine numerica si è concentrata in primo luogo sui comportamenti di trazione e frattura del polimero puro, mentre sono state confrontate le capacità relative alle metodologie di modellazione senza mesh. È stato verificato che le proprietà di frattura in modalità I sono principalmente determinate dalle proprietà di trazione. Tuttavia, un ulteriore lavoro numerico ha scoperto l'esistenza di diversi danni e meccanismi di cedimento concorrenti attraverso il confronto di polimeri rinforzati con nanoparticelle con polimeri non rinforzati, ed è stato scoperto che il collegamento a ponte dei nanotubi di carbonio può aumentare la resistenza alla frattura, mentre i difetti causati dalle nanoparticelle possono influenzare le proprietà di trazione. Sulla base di questi risultati, è stato quindi proposto un metodo peridinamico modificato con punti di materiale vincolati per replicare l'effetto delle nanoparticelle nei materiali polimerici invece di creare le loro geometrie reali. Questo approccio collega diverse scale nel processo di modellazione e consente di ottenere simulazioni meccaniche efficienti ma molto realistiche su macroscala. Successivamente, è stato studiato il rinforzo di nanoparticelle su compositi rinforzati con fibre lunghe e sono state sviluppate strategie di modellazione numerica affidabili, convalidate da esperimenti. Considerando vari scenari durante l’utilizzo dei compositi (inclusi gli eventi di impatto), è necessaria una caratterizzazione delle proprietà meccaniche in condizioni statiche e dinamiche (con velocità di deformazione elevate). Tuttavia, la grande variabilità nel processo di produzione richiederebbe una campagna di test specifica e ampia. Al fine di ridurre gli sforzi sperimentali, è stato sviluppato un approccio di modellazione numerica, in grado di aiutare nella definizione delle proprietà meccaniche di un generico composito a partire dai dati dei costituenti sotto varie velocità di deformazione. Il metodo è stato validato in un ambiente rilevante, sfruttando i dati del materiale nella replica dei test balistici rispetto alla velocità residua e alla morfologia del danno. Inoltre, le incertezze nell'architettura delle fibre sono state studiate anche su materiali compositi mediante una modellazione multiscala. Il risultato di entrambi i lavori è stato lo sviluppo un metodo numerico abbinato a un modello teorico per la riproduzione del comportamento dei compositi rinforzati con nanoparticelle sotto impatti a bassa velocità. Inoltre, la conduttività elettrica, fornita dagli effetti di tunneling dei nanotubi di carbonio, ha attirato attenzione durante la fase sperimentale. Questo effetto può essere potenzialmente applicato per il monitoraggio dell’integrità strutturale. Misurando la conducibilità elettrica durante le prove di trazione e frattura, la presenza di danneggiamenti / cricche sui campioni è stata correlata alle variazioni di conducibilità. Inoltre, considerando che la quantificazione della distribuzione delle nanoparticelle all'interno dei materiali rimane ancora una sfida nel campo dei nanocompositi, le proprietà elettriche sono state utilizzate in modo inverso per determinare la distribuzione delle nanoparticelle. In conclusione, la tesi ha esplorato l'effetto delle nanoparticelle sulle proprietà meccaniche e multifunzionali dei materiali compositi arricchiti con nanoparticelle. È stata condotta un'indagine completa comprendente lavori sia sperimentali che numerici, considerando approcci multiscala e l'incertezza dei materiali. Inoltre, i relativi lavori numerici presentati aprono la strada allo sviluppo e al potenziamento della progettazione mediante metodi di analisi di tali tipi di materiali anche in un ambiente di carico estremo.
Design of composite structure with nanoparticles to improve impact resistance
Ma, Dayou
2020/2021
Abstract
Nanoparticles, showing capabilities to improve the mechanical performance and provide multifunctional properties, can be regarded as the ideal reinforcements for composite materials. The combination of composite materials and nanoparticles would widen the potential applications of composites in industrial fields, especially when extreme loading conditions are considered. However, their size poses several challenges. Modelling the effect of nanoparticles in composites materials requires investigations at different scales. In order to comprehensively understand the effect of nanoparticles on the physical and mechanical properties of composite materials, a multiscale virtual design approach may be an efficient methodology in a numerical framework. Aim of this thesis was to investigate the effect of nanoparticles, with a special focus on the mechanical properties, while also considering their electrical conductivity, and to develop virtual design methodologies for further applications of nanocomposites under complex loading conditions, like impact cases. Based on experimental activities, the thesis developed numerical methodologies in a multiscale framework to study the effect of nanoparticles on polymers and woven composites by modelling the mechanical and electrical behaviours of nanocomposites and related neat composites. Three main research lines were followed in the thesis: nanoparticles in polymer materials, nanoparticles in woven composites and multifunctional properties of nanocomposites. In order to understand the effect of nanoparticles on the mechanical behaviour of materials, neat and nanoparticle-reinforced polymer were initially considered. The numerical investigation was firstly focused on tensile and fracture behaviours of neat polymer, while the capabilities related meshfree modelling methodologies were compared. It was verified that Mode-I fracture properties are mainly driven by tensile properties. However, further numerical work uncovered the existence of different damage and competing failure mechanisms through comparing nanoparticle-reinforced polymers with neat polymers, and it was found that the bridging of carbon nanotubes can increase the fracture resistance, while defects caused by nanoparticles may affect tensile properties. Based on these achievements, a modified peridynamic method was then proposed with constrained material points to replicate the effect of nanoparticles in polymer materials instead of creating their real geometries. This approach bridges different scales in the modelling process and allows to achieve efficient but very realistic mechanical simulations at macroscale. Subsequently, the reinforcement of nanoparticles on fibre-reinforced composites were investigated, and reliable numerical modelling strategies, validated by experiments, were developed. Considering various scenarios during the service of composites (including impact events), a characterization of the mechanical properties under static and dynamic (high strain rates) conditions is needed. However, large variability in the manufacturing process would require a specific and large test campaign. In order to reduce experimental efforts, a numerical modelling approach, able to assist in defining the mechanical properties of a generic composite starting from the data of the constituents under various strain rates, was developed for woven composites. The method was validated in a relevant environment, exploiting the material data in replicating ballistic tests with respects to the residual velocity and damage morphology. Furthermore, uncertainties in the fibre architecture were also investigated on neat woven composites by means of a multiscale modelling. Resulting from both works on neat woven composites, a numerical method coupled with a theoretical model was developed for the reproduction of the behaviour of nanoparticle-reinforced woven composites under low-velocity impacts. Moreover, the electric conductivity, provided by tunnelling effects from carbon nanotubes, attracted attentions in experiments. This effect can be potentially applied for structural health monitoring. Through measuring the electric conductivity during the tensile and fracture tests, the presence of damage/cracks on the samples was correlated with the changes in conductivity. In addition, considering that the quantification of nanoparticle distributions inside materials still remains a challenge in the field of nanocomposites, the electric properties were inversely used to determine the distribution of nanoparticles. In conclusion, the thesis explored the effect of nanoparticles on the mechanical and multifunctional properties of composite materials enriched with nanoparticles. A comprehensive investigation was carried out including both experimental and numerical works, considering multiple scales and the uncertainty of materials. Furthermore, the related numerical works paves the way for the development and boost of design by analysis methods of such kinds of materials even in a very harsh and extreme loading environment.File | Dimensione | Formato | |
---|---|---|---|
Thesis_2004.pdf
non accessibile
Dimensione
41.01 MB
Formato
Adobe PDF
|
41.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177829