Air-Breathing Electric Propulsion (ABEP) systems are innovative propulsion technologies exploited to fly spacecraft at Very Low Earth Orbit (VLEO), which are of great interest for Earth observation missions. The ABEP is composed by a specific designed intake which collects particles from the atmosphere and send them, as a propellant, to an electric thruster, providing the thrust with theoretically infinite propellant. Engineers studying ABEP technology are focused on the challenge to find the optimal design of the intake adopted to collect particles from the atmosphere. The purpose of this thesis is to make a preliminary study on possible intake geometries through Direct Simulation Monte Carlo (DSMC) and see how the collection efficiency change between them. After an introduction on the state of art of ABEP systems, the reader is introduced to the VLEO main characteristics, followed by the atmospheric model needed to define the operational conditions for the intakes. The gas dynamic theory is presented, focusing on the ”microscopic approach” that study the single molecule motion through the kinetic theory and Boltzmann’s equation. Then the DSMC is illustrated as direct-simulation method adopted to study the intakes. Three types of 2D simulation have been performed for each geometry: for the free molecule flow, for the collisional flow and for the collisional flow considering also chemical reactions. In the last part of the thesis a collection efficiencies comparison has been made, showing that the simulated geometries behave differently when moving from free molecule flow case to collisional flow and collisional flow with chemical reactions. In particular, some geometries increase the collection efficiency when chemical reactions are present and decrease when only collisions occur. An increase in the collection efficiency between the 2-3% respect free molecule flow case has been observed and the oxygen wall recombination seems to be the main cause of this difference. Other geometries see a decrements of performance considering collisions and chemical reactions, while an increment of the collection efficiency occur in the case of collisions without chemistry.
I sistemi denominati “Air-Breathing Electric Propulsion” (ABEP) sono tecnologie di propulsione innovative pensate per veicoli spaziali operanti in orbite terrestri molto basse (VLEO), che sono risultate di grande interesse per le missioni di osservazione della Terra. Un sistema ABEP è composto da un'apposita presa d’aria, progettata per raccogliere le particelle dall'atmosfera e inviarle, come propellente, ad un propulsore elettrico, fornendo così una spinta e garantendo propellente teoricamente infinito. Gli ingegneri che studiano la tecnologia ABEP sono attualmente concentrati sulla sfida di trovare un design ottimale della presa d’aria impiegata per raccogliere le particelle dall'atmosfera. Questa tesi si propone (i) di approfondire, attraverso la simulazione diretta, le possibili geometrie per la presa d’aria e (ii) di analizzare la variazione dell'efficienza di raccolta delle particelle nelle diverse geometrie simulate. Dopo un'introduzione sullo stato dell'arte dei sistemi ABEP, si introducono le principali caratteristiche delle orbite VLEO, seguite dal modello atmosferico necessario a definire le condizioni operative per le prese d’ aria. Viene quindi presentata la teoria alla base della gasdinamica, ponendo l' attenzione sull’ “approccio microscopico”, che studia il moto delle singole molecole attraverso la teoria cinetica dei gas e l' equazione di Boltzmann. Si illustra poi la Direct Simulation Monte Carlo (DSMC) come metodo di simulazione diretta per lo studio delle prese d’aria. Per ogni geometria sono stati eseguiti tre tipi di simulazione, in due dimensioni (2D): (i) per il flusso di molecole libere; (ii) per il flusso collisionale e (iii) per il flusso collisionale con reazioni chimiche attive. Nell'ultima parte della tesi si confronta l‘efficienza di raccolta delle particelle nelle geometrie analizzate, evidenziando come queste si comportino diversamente quando si passa dal flusso di molecole libere al flusso collisionale e al flusso collisionale con reazioni chimiche. In particolare, alcune geometrie vedono l’aumento dell'efficienza di raccolta quando sono presenti reazioni chimiche, mentre questa diminuisce quando si verificano solo collisioni: la causa principale di tale differenza sembra essere riconducibile alla ricombinazione a parete dell'ossigeno che porta ad un aumento della efficienza di raccolta attorno al 2-3% rispetto al caso di flusso di molecole libere. Si noti infine come altre geometrie vedono un decremento delle prestazioni considerando il caso di collisioni e reazioni chimiche, mentre un incremento dell'efficienza di raccolta si verifica quando si considerano solo le collisioni senza chimica attiva.
Preliminary performance analysis of intakes for air breathing electric propulsion systems
COLLOGROSSO, ALFONSO
2020/2021
Abstract
Air-Breathing Electric Propulsion (ABEP) systems are innovative propulsion technologies exploited to fly spacecraft at Very Low Earth Orbit (VLEO), which are of great interest for Earth observation missions. The ABEP is composed by a specific designed intake which collects particles from the atmosphere and send them, as a propellant, to an electric thruster, providing the thrust with theoretically infinite propellant. Engineers studying ABEP technology are focused on the challenge to find the optimal design of the intake adopted to collect particles from the atmosphere. The purpose of this thesis is to make a preliminary study on possible intake geometries through Direct Simulation Monte Carlo (DSMC) and see how the collection efficiency change between them. After an introduction on the state of art of ABEP systems, the reader is introduced to the VLEO main characteristics, followed by the atmospheric model needed to define the operational conditions for the intakes. The gas dynamic theory is presented, focusing on the ”microscopic approach” that study the single molecule motion through the kinetic theory and Boltzmann’s equation. Then the DSMC is illustrated as direct-simulation method adopted to study the intakes. Three types of 2D simulation have been performed for each geometry: for the free molecule flow, for the collisional flow and for the collisional flow considering also chemical reactions. In the last part of the thesis a collection efficiencies comparison has been made, showing that the simulated geometries behave differently when moving from free molecule flow case to collisional flow and collisional flow with chemical reactions. In particular, some geometries increase the collection efficiency when chemical reactions are present and decrease when only collisions occur. An increase in the collection efficiency between the 2-3% respect free molecule flow case has been observed and the oxygen wall recombination seems to be the main cause of this difference. Other geometries see a decrements of performance considering collisions and chemical reactions, while an increment of the collection efficiency occur in the case of collisions without chemistry.File | Dimensione | Formato | |
---|---|---|---|
2021_07_Collogrosso.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
3.43 MB
Formato
Adobe PDF
|
3.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177966