The research activity done in this thesis is motivated by the growing interest in electric mobility. Battery-powered vehicles are composed of many power converters. The most relevant are the traction drive, the battery management system (BMS), and the on-board battery charger. In power electronics, double star chopper cell (DSCC) converters are mostly known for their application in high voltage transmission systems. DSCC converters are a kind of modular multilevel converter (MMC), characterized by the presence of an accessible dc-bus. In the last decade, some researchers demonstrated the possibility to use a DSCC to realize a traction drive inverter integrating batteries. The use of DSCCs in battery electric vechicles (BEVs) comes with the advantage of replacing the three power converters functionalities with one highly modular and easily scalable device. Over the last decades, advancements in battery technology and power electronic devices favoured the spread of BEVs. Although some research has already been done, DSCCs are still not optimized for battery integration and variable speed drives. This thesis proposes last level PWM (LLPWM) and windowed PWM (WPWM), two modulation techniques designed for MMCs. Their aim is to improve the powertrain efficiency by applying PWM on specific portions of the multilevelled output waveform. With proper tuning, an optimum between losses within the power converter and motor efficiency can be achieved. When a DSCC operates, its dc-bus voltage is fixed. In a variable speed drive, constant dc-link voltage implies that all the converter modules are operating even when the motor speed and the related voltage is below the nominal. In that scenario, every module exchanges energy cyclically, decreasing battery lifespan and reducing the overall efficiency. This thesis proposes a variable dc-bus voltage control strategy that minimizes the energy exchange with the battery, reducing the storage system's stress and improving the converter efficiency without compromising its performance. Batteries embedded within the modules are also subjected to a relatively high current second harmonic component that might degrade their lifespan. In this work, a hybrid DSCC converter capable of shifting the low-frequency current harmonic toward a higher and easily filterable frequency is proposed and compared with standard topologies and control techniques. During the last years, research has been done in the field of DSCC converters for battery integration and variable speed drives. The technology is getting more and more mature. The BMS capabilities of DSCCs could unlock the possibility to integrate second life batteries within the storage system. More research effort is needed to unlock new possibilities, the knowledge gained by the research done in this field has been applied to design and build a small-scale DSCC converter prototype for future laboratory tests.
L’attività di ricerca svolta in questa tesi è motivata dall’aumento di interesse nei confronti della mobilità elettrica. I veicoli a batteria (BEV) integrano molteplici convertitori elettronici, tra cui i più rilevanti sono inverter di trazione, battery management system (BMS) e caricabatterie di bordo. In elettronica di potenza, i convertitori double star chopper cell (DSCC) sono principalmente noti per la loro applicazione in sistemi di trasmissione in alta tensione. I convertitori DSCC appartengono alla classe dei convertitori modulari multilivello (MMC) e si caratterizzano per la presenza di un dc-bus accessibile. Nell’ultimo decennio, alcuni gruppi di ricerca hanno dimostrato la possibilità di impiegare i convertitori DSCC per realizzare inverter di trazione integranti batterie. L’utilizzo dei convertitori DSCC nei BEV introduce il vantaggio di integrare in un singolo dispositivo i tre convertitori caratteristici dei veicoli elettrici. Negli ultimi decenni, gli avanzamenti tecnologici relativi alle batterie e al campo dell’elettronica di potenza hanno favorito il diffondersi dei veicoli elettrici. Sebbene sia già stata effettuata della ricerca, i convertitori DSCC non sono ancora stati ottimizzati per l’integrazione di batterie in azionamenti a velocità variabile. Questa tesi propone il last level PWM (LL-PWM) e il windowed PWM (W-PWM), due tecniche di modulazione appositamente progettate per i MMC. Il loro scopo è di incrementare l’efficienza dell’azionamento applicando il PWM solo su specifiche porzioni della forma d’onda di uscita. A seguito di una taratura appropriata, è possibile raggiungere un punto di ottimo tra perdite nel convertitore e perdite nel motore. Quando un convertitore DSCC è in funzione, il potenziale del suo dc-bus è tenuto costante. In un azionamento a velocità variabile, mantenere costante la tensione di dc-bus comporta che tutti i moduli del convertitore sono mantenuti accesi anche quando il motore gira a bassi regimi. In questo scenario, ogni modulo scambia energia con il sistema, venendo sottoposto a continui cicli di carica e scarica, riducendo la vita delle batterie e impattando negativamente sull’efficienza del sistema. Questa tesi propone una tecnica di controllo che permette di adattare la tensione del dc-bus alla velocità dall’azionamento, riducendo lo stress del sistema di accumulo e incrementando l’efficienza del sistema senza però ridurne le performance. Le batterie integrate all’interno dei moduli sono soggette a seconde armoniche in corrente che possono impattare sulla loro vita. In questo lavoro è stato proposto un convertitore DSCC ibrido in grado di shiftare le armoniche di corrente in bassa frequenza verso frequenze più alte e semplici da filtrare. La struttura presentata è stata poi confrontata con DSCC standard. Negli ultimi anni, è stata effettuata molta ricerca nel campo dei convertitori DSCC con lo scopo di integrare batterie all’interno dell’inverter di trazione di azionamenti a velocità variabile. Le funzionalità da BMS dei convertitori DSCC potranno inoltre rendere possibile l’integrazione di batterie second life all’interno del sistema di accumulo. Le conoscenze maturate nel corso del dottorato sono state impiegate per la realizzazione di un convertitore DSCC di piccola taglia.
Modular multilevel converter with integrated storage system for automotive applications
De Simone, Davide
2020/2021
Abstract
The research activity done in this thesis is motivated by the growing interest in electric mobility. Battery-powered vehicles are composed of many power converters. The most relevant are the traction drive, the battery management system (BMS), and the on-board battery charger. In power electronics, double star chopper cell (DSCC) converters are mostly known for their application in high voltage transmission systems. DSCC converters are a kind of modular multilevel converter (MMC), characterized by the presence of an accessible dc-bus. In the last decade, some researchers demonstrated the possibility to use a DSCC to realize a traction drive inverter integrating batteries. The use of DSCCs in battery electric vechicles (BEVs) comes with the advantage of replacing the three power converters functionalities with one highly modular and easily scalable device. Over the last decades, advancements in battery technology and power electronic devices favoured the spread of BEVs. Although some research has already been done, DSCCs are still not optimized for battery integration and variable speed drives. This thesis proposes last level PWM (LLPWM) and windowed PWM (WPWM), two modulation techniques designed for MMCs. Their aim is to improve the powertrain efficiency by applying PWM on specific portions of the multilevelled output waveform. With proper tuning, an optimum between losses within the power converter and motor efficiency can be achieved. When a DSCC operates, its dc-bus voltage is fixed. In a variable speed drive, constant dc-link voltage implies that all the converter modules are operating even when the motor speed and the related voltage is below the nominal. In that scenario, every module exchanges energy cyclically, decreasing battery lifespan and reducing the overall efficiency. This thesis proposes a variable dc-bus voltage control strategy that minimizes the energy exchange with the battery, reducing the storage system's stress and improving the converter efficiency without compromising its performance. Batteries embedded within the modules are also subjected to a relatively high current second harmonic component that might degrade their lifespan. In this work, a hybrid DSCC converter capable of shifting the low-frequency current harmonic toward a higher and easily filterable frequency is proposed and compared with standard topologies and control techniques. During the last years, research has been done in the field of DSCC converters for battery integration and variable speed drives. The technology is getting more and more mature. The BMS capabilities of DSCCs could unlock the possibility to integrate second life batteries within the storage system. More research effort is needed to unlock new possibilities, the knowledge gained by the research done in this field has been applied to design and build a small-scale DSCC converter prototype for future laboratory tests.File | Dimensione | Formato | |
---|---|---|---|
Davide_De_Simone_DEPOSITATA.pdf
accessibile in internet per tutti
Dimensione
32.12 MB
Formato
Adobe PDF
|
32.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/177999