The improvement of the ways in which energy sources are exploited represents one of the aspects on which the scientific and industrial progess is focused. In the present thesis work, the techno-economic analysis of some sCO2 cycles employed as bottomer of small-to medium-size gas turbines is performed. Supercritical CO2 cycles represent an innovative technological solution especially if applied for WHR applications; as a matter of fact, power cycles reject to the environment a significant amount of thermal power which can be recovered very efficiently with these types of compact systems. The investigated layouts are the Partial Heating Cycle, the Single Heated Cascade Cycle (with and without intercooled compression) and the Dual Heated Cascade Cycle; four gas turbines have been selected, the Kawasaki M5A-01D, the Siemens SGT-400, SGT-A35G62 and SGT-A35GT61 whose rated power is respectively 4.71 MW, 10.4 MW, 27.2 MW and 32.1 MW. The thermodynamic analysis of the bottoming cycle is carried out by means of the mass and energy balance equations and the REFPROP database for the evaluation of the thermodynamic properties of CO2. Turbomachines are modeled according to Aungier’s correlations for radial machines: they are single-stage and attention is focused especially on the compressor which is a critical component since it works on the vicinity of the critical point where sharp variations of CO2 properties occurs and where phase change could occur at the compressor inlet because of local flow acceleration and the related reduction in static pressure and temperature. Here, reference to a non-dimensional criterion named Acceleration Margin to Condensation (AMC) in order to avoid formation of carbon dioxide liquid droplets at the inlet of the compressor impeller is made. Several sensitivity analyses have been performed to understand the performance of such power cycles as function of different parameters like maximum cycle temperature, Mach numbers, minimum cycle pressure, heat exchangers’ effectiveness and extreme temperature differences. Finally, an economic comparison with competing technologies operating in the same power range has been carried out using appropriate costing relations.
Il miglioramento delle modalità di sfruttamento delle fonti energetiche rappresenta uno degli aspetti su cui si concentra il progresso scientifico e industriale. Nel presente lavoro di tesi viene eseguita l'analisi tecnico-economica di cicli a CO2 supercritica impiegati come bottomer di turbine a gas di piccole e medie dimensioni. I cicli a CO2 supercritici rappresentano una soluzione tecnologica innovativa soprattutto per applicazioni WHR; infatti, i cicli di potenza rigettano verso l'ambiente una notevole quantità di potenza termica che può essere recuperata in modo molto efficiente con questi tipi di sistemi compatti. Gli schemi studiati sono il ciclo Partial Heating, il ciclo Single Heated Cascade (con e senza compressione interrefrigerata) e il ciclo Dual Heated Cascade; sono state selezionate quattro turbine a gas, la Kawasaki M5A-01D e le Siemens SGT-400, SGT-A35G62 e SGT-A35GT61 con potenza nominale rispettivamente di 4,71 MW, 10,4 MW, 27,2 MW e 32,1 MW. L'analisi termodinamica del ciclo bottoming viene effettuata mediante le equazioni di bilancio di massa ed energia e il database REFPROP per la valutazione delle proprietà termodinamiche della CO2. Le turbomacchine sono modellate secondo le correlazioni di Aungier per le macchine radiali: sono monostadio e l'attenzione è focalizzata soprattutto sul compressore che è un componente critico poiché lavora in prossimità del punto critico dove si verificano forti variazioni delle proprietà della CO2 e dove potrebbero verificarsi cambiamenti di fase del fluido all'ingresso del compressore a causa dell'accelerazione locale del flusso e della relativa riduzione di pressione statica e della temperatura. Si fa riferimento ad un criterio adimensionale denominato Acceleration Margin to Condensation (AMC) per evitare la formazione di goccioline liquide di anidride carbonica all'ingresso della girante del compressore. Sono state eseguite diverse analisi di sensibilità con l'obiettivo di comprendere le prestazioni di tali cicli di potenza in funzione di diversi parametri come la temperatura massima del ciclo, i numeri di Mach, la pressione minima del ciclo, l'efficacia degli scambiatori di calore e le differenze di temperatura estreme. Infine, è stato effettuato un confronto economico con tecnologie concorrenti operanti nella stessa fascia di potenza utilizzando appropriate relazioni di costo.
Techno-economic analysis of sCO2-based cycles bottoming small-to medium-size gas turbines
Sicali, Federico
2020/2021
Abstract
The improvement of the ways in which energy sources are exploited represents one of the aspects on which the scientific and industrial progess is focused. In the present thesis work, the techno-economic analysis of some sCO2 cycles employed as bottomer of small-to medium-size gas turbines is performed. Supercritical CO2 cycles represent an innovative technological solution especially if applied for WHR applications; as a matter of fact, power cycles reject to the environment a significant amount of thermal power which can be recovered very efficiently with these types of compact systems. The investigated layouts are the Partial Heating Cycle, the Single Heated Cascade Cycle (with and without intercooled compression) and the Dual Heated Cascade Cycle; four gas turbines have been selected, the Kawasaki M5A-01D, the Siemens SGT-400, SGT-A35G62 and SGT-A35GT61 whose rated power is respectively 4.71 MW, 10.4 MW, 27.2 MW and 32.1 MW. The thermodynamic analysis of the bottoming cycle is carried out by means of the mass and energy balance equations and the REFPROP database for the evaluation of the thermodynamic properties of CO2. Turbomachines are modeled according to Aungier’s correlations for radial machines: they are single-stage and attention is focused especially on the compressor which is a critical component since it works on the vicinity of the critical point where sharp variations of CO2 properties occurs and where phase change could occur at the compressor inlet because of local flow acceleration and the related reduction in static pressure and temperature. Here, reference to a non-dimensional criterion named Acceleration Margin to Condensation (AMC) in order to avoid formation of carbon dioxide liquid droplets at the inlet of the compressor impeller is made. Several sensitivity analyses have been performed to understand the performance of such power cycles as function of different parameters like maximum cycle temperature, Mach numbers, minimum cycle pressure, heat exchangers’ effectiveness and extreme temperature differences. Finally, an economic comparison with competing technologies operating in the same power range has been carried out using appropriate costing relations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2021_07_Sicali.pdf
non accessibile
Dimensione
5.22 MB
Formato
Adobe PDF
|
5.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/178025