With the constant increase in energy demand, the development of new strategies for on-demand energy generation is a key step towards a sustainable energy economy. In fact, the irresponsible exploitation of the combustion-based energy production processes for over a century is causing an increase in the average world temperature, with devastating effects on our planet. Nowadays, the impact of the Greenhouse effect has been acknowledged by scientists and governments, which are actively working towards new solutions for a sustainable energy economy. Among renewables, solar energy is the most attractive one, being an abundance, available, and clean energy source. However, its intermittent nature and the mismatch between energy generation and demand, require storing the energy in a different form i.e. chemical, to be effectively distributed and used when required. Among the different energy storage technologies, water electrolysis, whose main product is hydrogen, has been considered as a valuable solution for this problem. Hydrogen-based technologies i.e. fuel cells, are indeed the main candidates for a long-term sustainable economy, contrasting the dependence on carbon-based ones. However, most of the hydrogen produced nowadays relies on gas reforming processes, whose byproducts are carbon monoxide (CO) and carbon dioxide (CO2). Thus, the exploitation of solar energy to sustain the water electrolysis represent the ideal energy generation and storage path because of its intrinsic sustainability. Among the solar-based hydrogen production routes, photoelectrochemical water splitting, which aims to reduce the cost of the traditional PV-electrolysis i.e. photovoltaic panel externally connected to an electrolyzer, is one of the most investigated. In this configuration, a photoactive material is directly immersed in the solution which, upon illumination, triggers the electrolysis reaction. In this thesis project, the research activity was focused on the development of novel synthesis methods and/or on the combination of materials for the fabrication of photoelectrodes, eventually integrated into a tandem photoelectrochemical device capable to sustain the electrolysis reaction without any external bias applied. A great part of the work was dedicated to the synthesis of Cu2ZnSnS4 (CZTS), an absorber material that has attracted the attention of the scientific community since it is considered a potential replacement of the CuInxGa(1-x)Se2. Specifically, the research activity focused on the design of organic plating solutions, either tin and copper-based, which allowed the fabrication of unconventional electrochemical stacks (Zn/Sn/Cu and Zn/Cu/Sn), precursors of CZTS. Finally, a CZTS/CdS/Pt photocathode was obtained. Following the idea of a sustainable and low-cost photoelectrode, a Cu2O based heterostructure was synthesized through electrodeposition followed by air annealing and reactive annealing in a sulfur-containing atmosphere which resulted in the Cu2O/CuO/CuS photocathode. As far as the n-type materials, the combination of hydrogenation treatment along with the implementation of an earth-abundant catalyst was studied in the case of titania nanorod array H-TiO2/FeOOH. Lastly, a small part of the project was dedicated to the synthesis of a bismuth vanadate-based photoanode, one of the most promising n-type materials for photoassisted water splitting. The synthesized semiconductors were characterized in a photoelectrochemical setup, highlighting their ability to trigger the electrolysis half-reactions. The best performing photoelectrodes were then selected and integrated into a tandem cell, comprising one photocathode and one photoanode, capable to trigger electrolysis without any external bias applied. The photon-to-current efficiency of the investigated devices was measured for both CZTS|TiO2 and CZTS|BiVO4 combination, exploiting different cell architectures, also under the application of a bias.
Con il costante aumento della richiesta energetica, lo sviluppo di nuove strategie per la generazione di energia è un passo fondamentale verso un'economia energetica sostenibile. Da oltre un secolo, infatti, lo sfruttamento irresponsabile dei processi di produzione di energia basati sulla combustione sta provocando un aumento della temperatura media mondiale, con effetti devastanti sul nostro pianeta. Al giorno d'oggi, l'impatto dell'effetto serra è stato riconosciuto da scienziati e governi che stanno lavorando attivamente a un'economia energetica sostenibile. Tra le rinnovabili, l'energia solare è quella che ha riscontrato il maggiore interesse, essendo una fonte di energia abbondante, ampiamente disponibile e pulita. Tuttavia, la sua natura intermittente e la mancata corrispondenza tra la produzione e la domanda di energia, richiedono che l'energia venga immagazzinata in una forma diversa, ad esempio chimica, per poi essere efficacemente distribuita e utilizzata quando richiesto. Tra le diverse tecnologie di accumulo di energia, l'elettrolisi dell'acqua, il cui prodotto principale è l'idrogeno, viene considerata una valida soluzione a questo problema. Le tecnologie che sfruttano idrogeno, ovvero le celle a combustibile, sono infatti le principali candidate per un'economia sostenibile a lungo termine, contrastando la dipendenza dai combustibili fossili. Tuttavia, la maggior parte dell'idrogeno prodotto oggigiorno si basa su processi di reforming del gas, i cui sottoprodotti sono monossido di carbonio (CO) e anidride carbonica (CO2). Pertanto, lo sfruttamento dell'energia solare per sostenere l'elettrolisi dell'acqua rappresenta il percorso ideale per la generazione e lo stoccaggio di energia. Tra le vie di produzione dell'idrogeno che sfruttano l’energia solare, l’elettrolisi dell’acqua per via fotoelettrochimica è una delle più studiate e mira a ridurre il costo della tradizionale integrazione di moduli fotovoltaici con elettrolizzatori. In questa configurazione, un materiale fotoattivo è direttamente immerso nella soluzione che, illuminandosi, innesca la reazione di elettrolisi. In questo progetto di tesi, l'attività di ricerca è stata focalizzata sullo sviluppo di nuovi metodi di sintesi e/o sulla combinazione di materiali volti alla fabbricazione di fotoelettrodi, eventualmente integrati in un dispositivo fotoelettrochimico tandem in grado di sostenere la reazione di elettrolisi senza l'applicazione di alcun bias esterno. Gran parte del lavoro è stata dedicata alla sintesi di Cu2ZnSnS4 (CZTS), un materiale semiconduttore che ha attirato l'attenzione della comunità scientifica in quanto considerato un potenziale sostituto del CuInxGa(1-x)Se2. In particolare, l'attività di ricerca si è concentrata sulla formulazione di soluzioni organiche per elettrodeposizione, sia a base di stagno che di rame, che hanno permesso la fabbricazione per via elettrochimica di film multistrato non convenzionali (Zn/Sn/Cu e Zn/Cu/Sn), precursori di CZTS. Infine, è stato fabbricato un fotocatodo CZTS/CdS/Pt. Con l'idea di sviluppare un fotoelettrodo sostenibile e a basso costo, è stata sintetizzata un’eterostruttura a base di Cu2O mediante elettrodeposizione seguita da trattamenti termici in aria e in atmosfera contenente zolfo che ha portato a un fotocatodo multistrato (Cu2O/CuO/CuS). Per quanto riguarda i materiali di tipo n, è stata studiata la combinazione del trattamento di idrogenazione e l'implementazione di un catalizzatore a base ferro nel caso di nanobacchette di titania (H-TiO2/FeOOH). Infine, una piccola parte del progetto è stata dedicata alla sintesi di un fotoanodo a base di bismuto vanadato (BiVO4), uno dei semiconduttori di tipo n più promettenti per i processi di elettrolisi fotoassistita. I semiconduttori sintetizzati sono stati caratterizzati in un setup fotoelettrochimico, evidenziando la loro capacità di promuovere le semireazioni di elettrolisi. I fotoelettrodi più performanti sono stati quindi selezionati e integrati in una cella tandem, comprendente un fotocatodo e un fotoanodo, in grado di sostenere il processo di elettrolisi senza l'applicazione di alcun bias esterno. L'efficienza di conversione dei dispositivi investigati è stata misurata sia per la combinazione CZTS|TiO2 che CZTS|BiVO4, sfruttando diverse configurazioni sperimentali, anche sotto l'applicazione di un bias.
Synthesis of semiconductor materials for photo-assisted electrochemical water splitting
Panzeri, Gabriele
2020/2021
Abstract
With the constant increase in energy demand, the development of new strategies for on-demand energy generation is a key step towards a sustainable energy economy. In fact, the irresponsible exploitation of the combustion-based energy production processes for over a century is causing an increase in the average world temperature, with devastating effects on our planet. Nowadays, the impact of the Greenhouse effect has been acknowledged by scientists and governments, which are actively working towards new solutions for a sustainable energy economy. Among renewables, solar energy is the most attractive one, being an abundance, available, and clean energy source. However, its intermittent nature and the mismatch between energy generation and demand, require storing the energy in a different form i.e. chemical, to be effectively distributed and used when required. Among the different energy storage technologies, water electrolysis, whose main product is hydrogen, has been considered as a valuable solution for this problem. Hydrogen-based technologies i.e. fuel cells, are indeed the main candidates for a long-term sustainable economy, contrasting the dependence on carbon-based ones. However, most of the hydrogen produced nowadays relies on gas reforming processes, whose byproducts are carbon monoxide (CO) and carbon dioxide (CO2). Thus, the exploitation of solar energy to sustain the water electrolysis represent the ideal energy generation and storage path because of its intrinsic sustainability. Among the solar-based hydrogen production routes, photoelectrochemical water splitting, which aims to reduce the cost of the traditional PV-electrolysis i.e. photovoltaic panel externally connected to an electrolyzer, is one of the most investigated. In this configuration, a photoactive material is directly immersed in the solution which, upon illumination, triggers the electrolysis reaction. In this thesis project, the research activity was focused on the development of novel synthesis methods and/or on the combination of materials for the fabrication of photoelectrodes, eventually integrated into a tandem photoelectrochemical device capable to sustain the electrolysis reaction without any external bias applied. A great part of the work was dedicated to the synthesis of Cu2ZnSnS4 (CZTS), an absorber material that has attracted the attention of the scientific community since it is considered a potential replacement of the CuInxGa(1-x)Se2. Specifically, the research activity focused on the design of organic plating solutions, either tin and copper-based, which allowed the fabrication of unconventional electrochemical stacks (Zn/Sn/Cu and Zn/Cu/Sn), precursors of CZTS. Finally, a CZTS/CdS/Pt photocathode was obtained. Following the idea of a sustainable and low-cost photoelectrode, a Cu2O based heterostructure was synthesized through electrodeposition followed by air annealing and reactive annealing in a sulfur-containing atmosphere which resulted in the Cu2O/CuO/CuS photocathode. As far as the n-type materials, the combination of hydrogenation treatment along with the implementation of an earth-abundant catalyst was studied in the case of titania nanorod array H-TiO2/FeOOH. Lastly, a small part of the project was dedicated to the synthesis of a bismuth vanadate-based photoanode, one of the most promising n-type materials for photoassisted water splitting. The synthesized semiconductors were characterized in a photoelectrochemical setup, highlighting their ability to trigger the electrolysis half-reactions. The best performing photoelectrodes were then selected and integrated into a tandem cell, comprising one photocathode and one photoanode, capable to trigger electrolysis without any external bias applied. The photon-to-current efficiency of the investigated devices was measured for both CZTS|TiO2 and CZTS|BiVO4 combination, exploiting different cell architectures, also under the application of a bias.File | Dimensione | Formato | |
---|---|---|---|
Thesis_GPanzeri_2021.pdf
non accessibile
Dimensione
14.5 MB
Formato
Adobe PDF
|
14.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/178155