The field of ‘Nanomedicine’ is the medical application of nanotechnology for diagnosis, treatment and prevention of disease and traumatic injury, improving human health through molecular tools and knowledge of the human body. In the last decades, the interest on Carbon Nanotubes (CNTs) is raising in biomedical applications, due to their impressive structural, optical, mechanical, and electronical proprieties. Carbon nanotubes (CNTs) are allotropes of carbon, formed by one or more cylindrical tubes of grafene in Single-wall Carbon Nanotube (SWCNTs) or Multi-Wall Carbon Nanotubes (MWCNTs), respectively. Their high aspect ratio and extended electronic π-structure, enable the surface functionalization with chemical groups, therapeutic and diagnostic agent (drugs, genes, vaccines, antibodies, biosensors, etc.) able to increase CNTs biocompatibility, making them excellent vehicle for drug delivery directly into cells. When exogenous materials, such as CNTs, enter the body, they interact with different biomolecules, such as proteins, present in biological fluids. The binding of cellular proteins to CNTs controls both biocompatibility and the possible toxic effect of drug delivery system. It is very important to understand the possible interactions between CNTs and physiological proteins to elucidate the relationship between the specific functionalization on CNTs surface and the protein affinity. The formation of the bio-corona (a layer(s) of biomolecules that adsorbs to the surface of a nanoparticle in a biological environment), due to adsorption of biomolecules onto the CNTs surface in a physiological environment, may lead to a modified biological “identity” of CNTs, contributing to the determination of their biocompatibility and toxicity. An important role is played by specific chemical groups that could be linked to the surface of CNTs, able to influence their behavior. The goal of functionalization is the increase of solubility or dispersibility in biocompatible media, reducing toxic and cytotoxic effects. The aim of the PhD project is the evaluation of the protein corona developed on differently functionalized MWCNT (f-MWCNTs) after their incubation in human plasma. The investigation of interactions between f-MWCNTs and proteins present in biological fluids, like human plasma, was performed by electrophoretic separation (SDS-PAGE) and mass spectrometry analysis (nLC-MS/MS). Multi-walled carbon nanotubes surfaces firstly were modified attaching acid and basic chemical functions such as carboxyl (MWCNTs-COOH) and ammonium (MWCNTs-N) groups respectively, chosen because they are used in various researches as a drug delivery system. These first two functionalizations were used to perform preliminary studies aimed at finding an appropriate incubation protocol (conducted by incubation of MWCNTs with a standard protein mixture) and to obtain initial information on the corona protein formation around the f-MWCNTs using complex protein mixtures (E. coli extract and human plasma). The aim of this part of project was to characterize the protein corona composition onto the two different functionalized carbon nanotubes, and then understand if there is a relationship between the functionalized group and acid/basic residues of the amino acids that make up a particular protein. MWCNTs were also functionalized with polyethylene glycol (PEG), chosen considering its well-known biocompatibility, and then incubated in human plasma to create the bio - corona. Plasma proteins were eluted in different conditions by using both native and denaturant buffers, useful to characterize the two protein corona layers: soft and hard corona. The proteomic fingerprinting of bio-corona was performed by SDS-PAGE and 2D-PAGE separation and mass spectrometry analysis. According to the recent studies, protein adsorption onto NPs is controlled by the exposure time of NPs to the fluidic media. Moreover, protein corona is a dynamic system that can influence the use of CNTs as drug delivery system. For these reasons, it was interesting to observe how the protein corona changes at different incubation times. In this last part of the project, it was performed a comparison between the human plasma incubation made with the control (MWCNTs-COOH-2) and MWCNTs-PEG5k at different times of incubation. In particular, we observe the Average Density of the band contained in each lane (corresponding to a specific time of incubation). The preliminary experiments (conducted with MWCNTs-COOH and MWCNTs-N) did not show significant correlations between different types of f-MWCNTs and the captured proteins. Otherwise, it was demonstrated the ability of these nanostructures to interact and to bind plasma proteins, (about 84% of all identified protein) and the dependence of protein adsorption on protein shape. Analyzing the interaction between PEGylated MWCNTs and human plasma proteins, proteomic methods and mass spectrometry analysis have identified proteins in soft corona (layer of molecules that are not bound directly to the nanoparticle itself but rather are bound to the hard corona), involved in the regulation of immune response and in the CNT transport, and biomolecules in hard corona (layer of molecules that interact directly with the nanoparticle) with a role in the maintenance of host homeostasis. A deep exploration (using 2D-PAGE separation) has demonstrated that native eluents (buffers as Tris-HCl and NaCl able to break protein–protein interactions present in soft corona without misfolded the proteins) were able to capture proteins of soft corona, characterized by complex secondary structures, and formed by both β-sheets and α-helices domains. Denaturant buffers have eluted many proteins with a high percentage of the α-helix structure that could be involved in specific interactions responsible for the formation of hard corona. These promising results have demonstrated the potential of PEGylated Multi-Walled Carbon Nanotubes as future candidates for drug delivery. The incubations of PEGylated Multi-Walled Carbon Nanotubes with human plasma at different incubation time were made to observe possible changes in the protein corona (qualitative and quantitative point of view) at short and long time exposure. The proteins probably belonging to the soft corona could interact more strongly with the chemical functionalization than MWCNTs surface without functionalization and this may provoke changes in the protein-corona increasing the incubation times.
La "Nanomedicina" è l'applicazione medica delle nanotecnologie per la diagnosi, il trattamento e la prevenzione di malattie e lesioni traumatiche, migliorando la salute umana attraverso strumenti molecolari e la conoscenza del corpo umano. Negli ultimi decenni, l'interesse per i nanotubi di carbonio (CNT) nelle applicazioni biomediche è in continuo aumento, grazie alle loro proprietà strutturali, ottiche, meccaniche ed elettroniche. I nanotubi di carbonio (CNT) sono allotropi del carbonio, formati da uno o più tubi cilindrici di grafene rispettivamente nanotubi di carbonio a parete singola (SWCNT) o nanotubi di carbonio a parete multipla (MWCNT). Il loro elevato allungamento e l'estesa struttura π elettronica, consentono la funzionalizzazione superficiale con gruppi chimici, agenti terapeutici e diagnostici (farmaci, geni, vaccini, anticorpi, biosensori, ecc.) in grado di aumentare la biocompatibilità dei CNT, rendendoli un eccellente veicolo per la somministrazione di farmaci direttamente nelle cellule. Quando i materiali esogeni, come i CNT, entrano nel corpo, interagiscono con diverse biomolecole, come le proteine, presenti nei fluidi biologici. Il legame delle proteine cellulari ai CNT controlla sia la biocompatibilità che il possibile effetto tossico del sistema di somministrazione dei farmaci. È molto importante comprendere le possibili interazioni tra CNT e proteine fisiologiche per chiarire la relazione tra la funzionalizzazione specifica sulla superficie dei CNT e l'affinità proteica. La formazione della bio-corona (uno strato di biomolecole che si adsorbe sulla superficie di una nanoparticella in un ambiente biologico), a causa dell'adsorbimento di biomolecole sulla superficie dei CNT in un ambiente fisiologico, può portare a un biologico modificato” identità” dei CNT, contribuendo alla determinazione della loro biocompatibilità e tossicità. Un ruolo importante è svolto da specifici gruppi chimici che potrebbero essere legati alla superficie dei CNT, in grado di influenzarne il comportamento. L'obiettivo della funzionalizzazione è l'aumento della solubilità o dispersibilità in mezzi biocompatibili, riducendo gli effetti tossici e citotossici. Lo scopo del presente lavoro è la valutazione del protein corona sviluppata su MWCNT diversamente funzionalizzati (f-MWCNT) dopo la loro incubazione nel plasma umano. Lo studio delle interazioni tra f-MWCNT e proteine presenti nei fluidi biologici, come il plasma umano, è stato eseguito mediante separazione elettroforetica (SDS-PAGE) e analisi di spettrometria di massa (nLC-MS/MS). Le superfici dei nanotubi di carbonio a parete multipla sono state inizialmente modificate attaccando funzioni chimiche acide e di base come rispettivamente i gruppi carbossilici (MWCNTs-COOH) e ammonio (MWCNTs-N), scelti perché utilizzati in varie ricerche come sistema di somministrazione di farmaci. Queste prime due funzionalizzazione sono state utilizzate per eseguire studi preliminari volti a trovare un protocollo di incubazione appropriato (condotto mediante incubazione di MWCNT con una miscela proteica standard) e per ottenere informazioni iniziali sulla formazione della proteina corona attorno agli f-MWCNT utilizzando miscele proteiche complesse (estratto di E. coli e plasma umano). Lo scopo di questa parte del progetto è stato quello di caratterizzare la composizione della corona proteica sui due diversi nanotubi di carbonio funzionalizzati, e quindi capire se esiste una relazione tra il gruppo funzionalizzato ei residui acido/basici degli amminoacidi che compongono una particolare proteina. I MWCNT sono stati anche funzionalizzati con glicole polietilenico (PEG), scelto in considerazione della sua ben nota biocompatibilità, e quindi incubati nel plasma umano per creare la bio-corona. Le proteine plasmatiche sono state eluite in diverse condizioni utilizzando tamponi sia nativi che denaturanti, utili per caratterizzare i due strati della corona proteica: corona morbida e corona dura. Il fingerprinting proteomico della bio-corona è stato eseguito mediante separazione SDS-PAGE e 2D-PAGE e analisi di spettrometria di massa. Secondo studi recenti, l'adsorbimento delle proteine sulle NP è controllato dal tempo di esposizione delle NP al mezzo fluidico. Inoltre, la corona proteica è un sistema dinamico che può influenzare l'uso dei CNT come sistema di somministrazione di farmaci. Per questi motivi è stato interessante osservare come la corona proteica cambia nei diversi tempi di incubazione. In quest'ultima parte del progetto è stato effettuato un confronto tra l'incubazione di plasma umano effettuata con il controllo (MWCNTs-COOH-2) e MWCNTs-PEG5k a diversi tempi di incubazione. In particolare, osserviamo la Densità Media della banda contenuta in ciascuna corsia (corrispondente ad uno specifico tempo di incubazione). Gli esperimenti preliminari (condotti con MWCNTs-COOH e MWCNTs-N) non hanno mostrato correlazioni significative tra i diversi tipi di f-MWCNT e le proteine catturate. In caso contrario, è stata dimostrata la capacità di queste nanostrutture di interagire e legarsi alle proteine plasmatiche (circa l'84% di tutte le proteine identificate) e la dipendenza dell'adsorbimento proteico dalla forma delle proteine. Analizzando l'interazione tra MWCNT PEGhilati e proteine plasmatiche umane, metodi di proteomica e analisi di spettrometria di massa hanno identificato proteine in soft corona (strato di molecole che non sono legate direttamente alla nanoparticella stessa ma piuttosto sono legate alla hard corona), coinvolte nella regolazione della risposta immunitaria e nel trasporto dei CNT, e biomolecole in hard corona (strato di molecole che interagiscono direttamente con la nanoparticella) con un ruolo nel mantenimento dell'omeostasi dell'ospite. Una profonda esplorazione (usando la separazione 2D-PAGE) ha dimostrato che eluenti nativi (tamponi come Tris-HCl e NaCl in grado di rompere le interazioni proteina-proteina presenti nella soft corona senza piegare male le proteine) erano in grado di catturare proteine della soft corona, caratterizzate da strutture secondarie complesse e formate sia da β-sheets che da α-eliche. I tamponi denaturanti hanno eluito molte proteine con un'alta percentuale della struttura ad α-elica che potrebbero essere coinvolte in interazioni specifiche responsabili della formazione della corona dura. Questi risultati promettenti hanno dimostrato il potenziale dei nanotubi di carbonio multiparete PEGhilati come futuri candidati per la somministrazione di farmaci. Le incubazioni di nanotubi di carbonio multiparete PEGhilati con plasma umano a diversi tempi di incubazione sono state effettuate per osservare possibili cambiamenti nella corona proteica (dal punto di vista qualitativo e quantitativo) a breve e lungo tempo di esposizione. Le proteine probabilmente appartenenti alla soft corona potrebbero interagire più fortemente con la funzionalizzazione chimica rispetto alla superficie dei MWCNT senza funzionalizzazione e questo potrebbe provocare cambiamenti nella proteina-corona aumentando i tempi di incubazione.
Characterization of biological fluids proteins involved in the interaction with functionalized carbon nanotube using proteomic approach
NICOLETTI, MARIA
2020/2021
Abstract
The field of ‘Nanomedicine’ is the medical application of nanotechnology for diagnosis, treatment and prevention of disease and traumatic injury, improving human health through molecular tools and knowledge of the human body. In the last decades, the interest on Carbon Nanotubes (CNTs) is raising in biomedical applications, due to their impressive structural, optical, mechanical, and electronical proprieties. Carbon nanotubes (CNTs) are allotropes of carbon, formed by one or more cylindrical tubes of grafene in Single-wall Carbon Nanotube (SWCNTs) or Multi-Wall Carbon Nanotubes (MWCNTs), respectively. Their high aspect ratio and extended electronic π-structure, enable the surface functionalization with chemical groups, therapeutic and diagnostic agent (drugs, genes, vaccines, antibodies, biosensors, etc.) able to increase CNTs biocompatibility, making them excellent vehicle for drug delivery directly into cells. When exogenous materials, such as CNTs, enter the body, they interact with different biomolecules, such as proteins, present in biological fluids. The binding of cellular proteins to CNTs controls both biocompatibility and the possible toxic effect of drug delivery system. It is very important to understand the possible interactions between CNTs and physiological proteins to elucidate the relationship between the specific functionalization on CNTs surface and the protein affinity. The formation of the bio-corona (a layer(s) of biomolecules that adsorbs to the surface of a nanoparticle in a biological environment), due to adsorption of biomolecules onto the CNTs surface in a physiological environment, may lead to a modified biological “identity” of CNTs, contributing to the determination of their biocompatibility and toxicity. An important role is played by specific chemical groups that could be linked to the surface of CNTs, able to influence their behavior. The goal of functionalization is the increase of solubility or dispersibility in biocompatible media, reducing toxic and cytotoxic effects. The aim of the PhD project is the evaluation of the protein corona developed on differently functionalized MWCNT (f-MWCNTs) after their incubation in human plasma. The investigation of interactions between f-MWCNTs and proteins present in biological fluids, like human plasma, was performed by electrophoretic separation (SDS-PAGE) and mass spectrometry analysis (nLC-MS/MS). Multi-walled carbon nanotubes surfaces firstly were modified attaching acid and basic chemical functions such as carboxyl (MWCNTs-COOH) and ammonium (MWCNTs-N) groups respectively, chosen because they are used in various researches as a drug delivery system. These first two functionalizations were used to perform preliminary studies aimed at finding an appropriate incubation protocol (conducted by incubation of MWCNTs with a standard protein mixture) and to obtain initial information on the corona protein formation around the f-MWCNTs using complex protein mixtures (E. coli extract and human plasma). The aim of this part of project was to characterize the protein corona composition onto the two different functionalized carbon nanotubes, and then understand if there is a relationship between the functionalized group and acid/basic residues of the amino acids that make up a particular protein. MWCNTs were also functionalized with polyethylene glycol (PEG), chosen considering its well-known biocompatibility, and then incubated in human plasma to create the bio - corona. Plasma proteins were eluted in different conditions by using both native and denaturant buffers, useful to characterize the two protein corona layers: soft and hard corona. The proteomic fingerprinting of bio-corona was performed by SDS-PAGE and 2D-PAGE separation and mass spectrometry analysis. According to the recent studies, protein adsorption onto NPs is controlled by the exposure time of NPs to the fluidic media. Moreover, protein corona is a dynamic system that can influence the use of CNTs as drug delivery system. For these reasons, it was interesting to observe how the protein corona changes at different incubation times. In this last part of the project, it was performed a comparison between the human plasma incubation made with the control (MWCNTs-COOH-2) and MWCNTs-PEG5k at different times of incubation. In particular, we observe the Average Density of the band contained in each lane (corresponding to a specific time of incubation). The preliminary experiments (conducted with MWCNTs-COOH and MWCNTs-N) did not show significant correlations between different types of f-MWCNTs and the captured proteins. Otherwise, it was demonstrated the ability of these nanostructures to interact and to bind plasma proteins, (about 84% of all identified protein) and the dependence of protein adsorption on protein shape. Analyzing the interaction between PEGylated MWCNTs and human plasma proteins, proteomic methods and mass spectrometry analysis have identified proteins in soft corona (layer of molecules that are not bound directly to the nanoparticle itself but rather are bound to the hard corona), involved in the regulation of immune response and in the CNT transport, and biomolecules in hard corona (layer of molecules that interact directly with the nanoparticle) with a role in the maintenance of host homeostasis. A deep exploration (using 2D-PAGE separation) has demonstrated that native eluents (buffers as Tris-HCl and NaCl able to break protein–protein interactions present in soft corona without misfolded the proteins) were able to capture proteins of soft corona, characterized by complex secondary structures, and formed by both β-sheets and α-helices domains. Denaturant buffers have eluted many proteins with a high percentage of the α-helix structure that could be involved in specific interactions responsible for the formation of hard corona. These promising results have demonstrated the potential of PEGylated Multi-Walled Carbon Nanotubes as future candidates for drug delivery. The incubations of PEGylated Multi-Walled Carbon Nanotubes with human plasma at different incubation time were made to observe possible changes in the protein corona (qualitative and quantitative point of view) at short and long time exposure. The proteins probably belonging to the soft corona could interact more strongly with the chemical functionalization than MWCNTs surface without functionalization and this may provoke changes in the protein-corona increasing the incubation times.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_Nicoletti Maria.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri |
Supplementary figure PhD thesis.pptx
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.32 MB
Formato
Microsoft Powerpoint XML
|
3.32 MB | Microsoft Powerpoint XML | Visualizza/Apri |
Supplementary Table 11.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
413.71 kB
Formato
Microsoft Excel XML
|
413.71 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 2.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
1.03 MB
Formato
Microsoft Excel XML
|
1.03 MB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 3.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
27.11 kB
Formato
Microsoft Excel XML
|
27.11 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 4.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
455.66 kB
Formato
Microsoft Excel XML
|
455.66 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 5.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
16.14 kB
Formato
Microsoft Excel XML
|
16.14 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 6.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
385.21 kB
Formato
Microsoft Excel XML
|
385.21 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 7.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
17.43 kB
Formato
Microsoft Excel XML
|
17.43 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 8.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
364.32 kB
Formato
Microsoft Excel XML
|
364.32 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 9.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
21.1 kB
Formato
Microsoft Excel XML
|
21.1 kB | Microsoft Excel XML | Visualizza/Apri |
Supplementary Table 10.xlsx
accessibile in internet solo dagli utenti autorizzati
Dimensione
126.67 kB
Formato
Microsoft Excel XML
|
126.67 kB | Microsoft Excel XML | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/178972