The growing adoption of small satellite platforms in deep space missions pointed out the necessity to use a software-defined radio transponder as part of the telecommunication payload in order to grant the possibility of real-time reconfigurability to cope with service requirements. Argotec is an Italian aerospace company that recently has undertaken a project named Ermes: a software-defined radio transponder operating at K-band suitable for deep space communications. The digital signal processing board included within the transponder will comprehend three main sub-systems: transmitter, receiver, and ranging. Mainly, ranging is used to determine the spacecraft distance relative to the ground station and use such a piece of information to perform orbit determination. Moreover, the accuracy achievable on the ranging measurements are strongly dependent on the signal propagation through the atmosphere, which may introduce severe effects at high frequencies. The current thesis work aims to design and develop a ranging system suitable for a software-defined radio transponder operating at K-band. The design process aimed at identifying all possible ranging techniques and the different possibilities for what concerns ranging channel architecture. State-of-the-art research allowed to compute a tradeoff analysis and select the optimal solution in the present context. At this point, atmospheric propagation impairments at K-band have been modeled and later included in a design control table to estimate the ranging system performance in advance. The computation was also instrumental in understanding how available ranging power and required integration time impact the overall measurement accuracy. The preliminary study revealed that the best design solution for the problem was a two-way coherent regenerative ranging scheme based on pseudo-noise codes. Based on this result, the system design was carried out, through a functional analysis, and includes elements for code tracking, acquisition, and onboard regeneration. The design presented in this thesis shows that centimeter-level accuracies are possible thanks to the narrow chip tracking loop bandwidth that allows for uplink noise removal and the large available power that grants to maintain the integration time small. The ranging system has been validated through software simulations and was further integrated within a test bench to test its robustness against code propagation on a physical channel. The results obtained in this context, along with the robustness to variable delay, confirm the reliability of the system and its suitability for integration within the Ermes transponder.
L’incremento nell’adozione delle piattaforme satellitari di piccole dimensioni nell’ambito di missioni satellitari ha evidenziato la necessità di utilizzare transponder definiti via software come parte del payload di telecomunicazioni a bordo. Tali dispositivi rendono possibile la riconfigurabilità istantanea della radio per far fronte ai requisiti di servizio. Argotec è un’azienda italiana che si occupa di ingegneria aerospaziale che recentemente ha iniziato un progetto chiamato Ermes: un transponder radio definito via software che opera in banda K utilizzabile nell’ambito delle comunicazioni con lo spazio profondo. La scheda di processing inclusa nel transponder consisterà di tre elementi principali: trasmettitore, ricevitore e ranging. Nello specifico, il ranging è utilizzato per determinare la distanza tra il satellite e la stazione di Terra e utilizza tale informazione per procedure di determinazione dell’orbita. L’accuratezza ottenibile sulla misura di distanza dipende fortemente dalla propagazione del segnale attraverso l’atmosfera terrestre che può introdurre perdite significative ad elevate frequenze. Il presente lavoro di tesi ha come obiettivo effettuare il design e implementazione di un sistema di ranging integrabile in un transponder radio definito via software che operi in banda K. Il processo di design si è proposto di identificare tutte le possibili tecniche di misura della distanza e i vari metodi per implementare l’architettura del canale di ranging. In questo contesto, una ricerca sullo stato dell’arte ha reso possibile un’analisi di trade-off tra le architetture e la selezione di una soluzione ottimale. A questo punto, i contributi di perdita introdotti dalla propagazione attraverso l’atmosfera in banda K sono stati modellati e successivamente inclusi in una “design control table” per stimare le performance di sistema a priori. La computazione è stata inoltre utile per capire come la potenza di ranging disponibile e il tempo di integrazione del segnale richiesto impattassero l’accuratezza sulla misura. Lo studio preliminare ha rivelato che il miglior design per un sistema di ranging in questo contesto è uno schema “two-way” coerente basato su codici pseudo-randomici. Sulla base del risultato ottenuto, il design di sistema è stato effettuato includendo componenti per realizzare tracking e acquisizione del codice e rigenerazione a bordo. Il sistema presentato nella tesi dimostra che accuratezze centimetriche sono ottenibili grazie ad una banda del “chip tracking loop” sufficientemente stretta che permette la rimozione del rumore di uplink e ad una potenza di ranging elevata che permette di mantenere il tempo di integrazione ridotto. Il sistema è stato validato attraverso simulazioni software ed è stato inoltre integrato in un banco di prova hardware per testare la sua robustezza ad una propagazione attraverso un canale fisico. I risultati ottenuti, insieme alla capacità di funzionamento in presenza di ritardo variabile, hanno confermato che il sistema è adatto per essere integrato all’interno del transponder Ermes.
Pseudo-noise regenerative ranging system for deep space software defined radio transponders
BOTTANI, MARTA
2020/2021
Abstract
The growing adoption of small satellite platforms in deep space missions pointed out the necessity to use a software-defined radio transponder as part of the telecommunication payload in order to grant the possibility of real-time reconfigurability to cope with service requirements. Argotec is an Italian aerospace company that recently has undertaken a project named Ermes: a software-defined radio transponder operating at K-band suitable for deep space communications. The digital signal processing board included within the transponder will comprehend three main sub-systems: transmitter, receiver, and ranging. Mainly, ranging is used to determine the spacecraft distance relative to the ground station and use such a piece of information to perform orbit determination. Moreover, the accuracy achievable on the ranging measurements are strongly dependent on the signal propagation through the atmosphere, which may introduce severe effects at high frequencies. The current thesis work aims to design and develop a ranging system suitable for a software-defined radio transponder operating at K-band. The design process aimed at identifying all possible ranging techniques and the different possibilities for what concerns ranging channel architecture. State-of-the-art research allowed to compute a tradeoff analysis and select the optimal solution in the present context. At this point, atmospheric propagation impairments at K-band have been modeled and later included in a design control table to estimate the ranging system performance in advance. The computation was also instrumental in understanding how available ranging power and required integration time impact the overall measurement accuracy. The preliminary study revealed that the best design solution for the problem was a two-way coherent regenerative ranging scheme based on pseudo-noise codes. Based on this result, the system design was carried out, through a functional analysis, and includes elements for code tracking, acquisition, and onboard regeneration. The design presented in this thesis shows that centimeter-level accuracies are possible thanks to the narrow chip tracking loop bandwidth that allows for uplink noise removal and the large available power that grants to maintain the integration time small. The ranging system has been validated through software simulations and was further integrated within a test bench to test its robustness against code propagation on a physical channel. The results obtained in this context, along with the robustness to variable delay, confirm the reliability of the system and its suitability for integration within the Ermes transponder.File | Dimensione | Formato | |
---|---|---|---|
2021_10_Bottani.pdf
accessibile in internet per tutti
Descrizione: This thesis work discusses the design and implementation of a regenerative ranging system suitable for deep-space radio transponders operating at K band
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/179556