In the last decades, wind power generation has undergone a strong expansion and it proposes itself as a valid alternative to substitute the sources of energy more obsolete. The actual problem of fossil fuel pollution and its consequences, requires in fact gratest interest in renewable energies. Wind power generation represents one of the main choices: for what concerning national needs, particular mention has to be made to "eolic floating offshore" wind farms which represent one of the last boundary in the sector of renewable energy since they allow to take advantage of strong and stable winds, characteristics which is possible to found only in high sea. However wind power generation remains still an energy resource with remarkably significant costs, especially compared with the not-renewable ones. Consequently, academical and industrial institutions are working hard on discovering new techniques and solutions in order to reduce the cost of energy along with new strategies in order to optimize the performances of wind farms. In this perspective, the coordinate control of wind farms could be a possible solution in order to obtain an increased overall power production along with a longer turbine lifespan. However, the use of these wind plant controls requires a careful analysis for what concerns the maximum and fatigue loads acting on a single turbine, either if this machine is the one over which the control is operating, or if it is the one interested by the active control. In this context, this analysis is crucial because it establishes if the chosen control technique could be applied on pre-existing turbines, or otherwise, if it possible to design them optimizing the strategy. This Thesis will focus on the understanding of the effects of the implementation of one of these techniques over existing machines, with the aim of clarifying the actual feasibility inside real wind farms, through methodologies based upon highly detailed numerical models. In particular, it is accurately analyzed the behaviour of a single turbine located upvalley where the blade pitch angle changes following a particular periodic motion defined by Sinusoidal functions. This technique is named Sinusoidal Pitch Collective Motion (SPCM) and its principal effect is to re-energize the down-valley rotor wake in order to make the following turbine extract more energy from the wind flow. Results of the study will show that a possible implementation of this wind farm control strategy must be carefully evaluated to avoid excessive loadings which may compromise the structural integrity of the turbines.
Negli ultimi decenni, il settore eolico ha subito una forte espansione e si propone come una valida alternativa per sostituire le piú obsolete fonti di energia. L’attuale problematica relativa all’inquinamento dovuto ai combustibili fossili e ai suoi effetti, richiede infatti maggiore interesse nei confronti delle energie rinnovabili. Il settore eolico rappresenta una delle principali scelte: per quello che riguarda le necessitá nazionali, particolare menzione deve essere fatta riguardo l’"eolico galleggiante" che rappresenta una delle ultime frontiere nel settore delle energie rinnovabili poiché consente di sfruttare venti forti e stabili, fattori che si possono trovare solo in mare aperto. Tuttavia il settore eolico rimane ancora una delle risorse energetiche con costi notevolmente significativi, specialmente a confronto con le risorse non rinnovabili. Di conseguenza, le istituzioni accademiche e industriali si stanno impegnando a trovare nuove tecniche e soluzioni per ridurre il costo dell’energia unite a nuove strategie per ottimizzare le prestazioni degli impianti produttivi. In questa prospettiva, il controllo coordinato dei parchi eolici puó essere una delle soluzioni per ottenere una produzione di energia complessiva piú elevata e una vita piú lunga delle turbine. Tuttavia, l’uso di queste tecniche di controllo del parco eolico richiede un’analisi accurata per quanto riguarda i carichi massimi e a fatica sperimentati da una singola turbina, sia se quest’ultima costituisce la macchina su cui opera il controllo, o sia se questa sia la macchina interessata dal controllo attivo. In quest’ottica, questa analisi é di importanza cruciale perché stabilisce se il controllo scelto puó essere applicato direttamente alle turbine eoliche esistenti o se, al contrario, e possibile progettarli ottimizzando tale controllo. Questa Tesi si concentrerá sulla comprensione degli effetti dell’applicazione di una di queste strategie su macchine esistenti, al fine di chiarirne la reale fattibilitá negli attuali parchi eolici, attraverso metodologie basate su modelli numerici altamente dettagliati. In particolare, analizziamo con precisione il comportamento di una singola macchina posta a monte dove l’angolo di direzione passo al quale le pale sono sottoposte segue un particolare andamento periodico definito da particolari funzioni sinusoidali. Tale tecnica é chiamata Sinusoidal Pitch Collective Motion (SPCM) e ha come principale effetto quello di re-energizzare la scia a valle del rotore in modo da permettere alla turbina successiva di estrarre piú energia dal flusso d’aria. Gli esiti dello studio mostreranno che una possibile implementazione di questa strategia di controllo deve essere valutata attentamente in modo da evitare carichi eccessivi che possano compromettere l’integritá strutturale delle turbine.
Impact of a dynamic induction control on wind turbine loads
Trovato, Giovanni
2020/2021
Abstract
In the last decades, wind power generation has undergone a strong expansion and it proposes itself as a valid alternative to substitute the sources of energy more obsolete. The actual problem of fossil fuel pollution and its consequences, requires in fact gratest interest in renewable energies. Wind power generation represents one of the main choices: for what concerning national needs, particular mention has to be made to "eolic floating offshore" wind farms which represent one of the last boundary in the sector of renewable energy since they allow to take advantage of strong and stable winds, characteristics which is possible to found only in high sea. However wind power generation remains still an energy resource with remarkably significant costs, especially compared with the not-renewable ones. Consequently, academical and industrial institutions are working hard on discovering new techniques and solutions in order to reduce the cost of energy along with new strategies in order to optimize the performances of wind farms. In this perspective, the coordinate control of wind farms could be a possible solution in order to obtain an increased overall power production along with a longer turbine lifespan. However, the use of these wind plant controls requires a careful analysis for what concerns the maximum and fatigue loads acting on a single turbine, either if this machine is the one over which the control is operating, or if it is the one interested by the active control. In this context, this analysis is crucial because it establishes if the chosen control technique could be applied on pre-existing turbines, or otherwise, if it possible to design them optimizing the strategy. This Thesis will focus on the understanding of the effects of the implementation of one of these techniques over existing machines, with the aim of clarifying the actual feasibility inside real wind farms, through methodologies based upon highly detailed numerical models. In particular, it is accurately analyzed the behaviour of a single turbine located upvalley where the blade pitch angle changes following a particular periodic motion defined by Sinusoidal functions. This technique is named Sinusoidal Pitch Collective Motion (SPCM) and its principal effect is to re-energize the down-valley rotor wake in order to make the following turbine extract more energy from the wind flow. Results of the study will show that a possible implementation of this wind farm control strategy must be carefully evaluated to avoid excessive loadings which may compromise the structural integrity of the turbines.File | Dimensione | Formato | |
---|---|---|---|
Tesi Giovanni Trovato.pdf
accessibile in internet per tutti
Dimensione
9.67 MB
Formato
Adobe PDF
|
9.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/179789