In the last few years, flow chemistry is entering into the pharmaceutical industry, which has until now relied on batch production. The advantages that flow chemistry offers to pharmaceutical synthesis are related to the enhanced effectiveness of material and energy transport phenomena, that is enabled by the small reactor scale. The rapid mixing and the excellent temperature control allow to achieve improvements in terms of productivity, safety, environmental impact and process scale-up. Moreover, a large number of reactions, that were once considered impossible because of the low yields or hazardous conditions, are now possible in flow. The goal of this thesis is the development and the optimization of key steps of the production of a contrast agent, within the scope of integrating flow processes with batch reactions in a cascade-type process. The first part of the experimental work consists in the identification of a batch pathway for an amination to produce the first intermediate of the process. Different synthetic routes were tested, with the goal of finding methods leading to high yields. The second part of the work consists in the optimization, under continuous flow conditions, of the second step of the contrast agent synthesis (an alkylation). The reaction, optimized in batch, was translated in continuous and different operation conditions were tested, varying temperatures and residence times. In this way, it was possible to determine the optimal reaction parameters and compare the batch and continuous flow processes. The final step is the amine protection, done in batch, to lead to the final drug intermediate.
Negli ultimi anni, la chimica in flusso ha allargato il suo campo di applicazione all’industria farmaceutica, fino ad ora legata alla produzione in batch. I vantaggi che la chimica in flusso offre alla sintesi farmaceutica sono legati alla maggior efficacia dei fenomeni di trasporto di materia ed energia, che è garantita dalla piccola dimensione caratteristica del reattore. La rapidità di miscelazione e l’ottimo controllo della temperatura permettono di ottenere miglioramenti nella produttività, nella sicurezza, nell’impatto ambientale e nello scale-up dei processi. Inoltre, un gran numero di reazioni, una volta considerate impossibili perché a bassissima resa o troppo pericolose, sono ora realizzabili in flusso. Questa tesi ha l’obiettivo di sviluppare e ottimizzare alcuni step chiave del processo di produzione di un agente di contrasto, con lo scopo di integrare stadi in continuo e reazioni batch in un processo a cascata. La prima parte del lavoro sperimentale consiste nell’individuazione di una procedura di amminazione in batch per la produzione del primo intermedio del processo. Diverse vie sintetiche sono state testate con l’obiettivo di trovare un metodo capace di garantire alte rese. La seconda parte del lavoro consiste invece nell’ottimizzazione, in continuo, del successivo step della sintesi dell’agente di contrasto (una alchilazione). La reazione, già ottimizzata in batch, è stata trasposta in continuo e diverse condizioni operative sono state testate, variando temperatura e tempo di residenza all’interno del reattore. In questo modo è stato possibile determinare i parametri di reazione ottimali e confrontare il processo batch con quello in continuo. L’ultimo step di protezione dell’ammina, condotto in batch, produce l’intermedio farmaceutico finale.
Multistep reaction cascade integrating batch and flow steps for the industrial synthesis of a contrast agent
Annoscia, Enrico
2020/2021
Abstract
In the last few years, flow chemistry is entering into the pharmaceutical industry, which has until now relied on batch production. The advantages that flow chemistry offers to pharmaceutical synthesis are related to the enhanced effectiveness of material and energy transport phenomena, that is enabled by the small reactor scale. The rapid mixing and the excellent temperature control allow to achieve improvements in terms of productivity, safety, environmental impact and process scale-up. Moreover, a large number of reactions, that were once considered impossible because of the low yields or hazardous conditions, are now possible in flow. The goal of this thesis is the development and the optimization of key steps of the production of a contrast agent, within the scope of integrating flow processes with batch reactions in a cascade-type process. The first part of the experimental work consists in the identification of a batch pathway for an amination to produce the first intermediate of the process. Different synthetic routes were tested, with the goal of finding methods leading to high yields. The second part of the work consists in the optimization, under continuous flow conditions, of the second step of the contrast agent synthesis (an alkylation). The reaction, optimized in batch, was translated in continuous and different operation conditions were tested, varying temperatures and residence times. In this way, it was possible to determine the optimal reaction parameters and compare the batch and continuous flow processes. The final step is the amine protection, done in batch, to lead to the final drug intermediate.File | Dimensione | Formato | |
---|---|---|---|
Thesis_EA.pdf
non accessibile
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/180144