This Thesis work investigates from a numerical point of view catalytic pulsed fluidized beds to understand the effects of the presence of a bubble tessellation, formed by the inlet gas pulsation, over the process productivity. To computationally predict the behaviour of catalytic pulsed fluidized systems, the CatalyticCFDEM framework has been developed by combining the LIGGGHTS® based tracking of the solid phase with the solution of catalytic reactions by means of the catalyticFOAM framework. First, the CatalyticCFDEM framework has been assessed from a fluid dynamic point of view by studying the influence of the pulsation frequency over the formation of bubbles structural schemes, particles bed expansion and bubble diameter. In addition, the degree of particles mixing in the emulsion phase has been investigated by parametrically analyse the influence of the pulsation frequency, dimensionless amplitude, and dimensionless mean velocity of the inlet gas flow. Finally, all the outcomes of the hydrodynamics analysis have been adopted to understand, from a reactive point of view, the impact of a pulsed inlet gas flow over a catalytic fluidized bed reactor. In particular, the hydrogen oxidation over Platinum, operated at ambient temperature with oxygen as limiting reactant, has been adopted in this work to investigate the performances of pulsed fluidized beds. This analysis shows that the conversion of the oxygen is deeply affected by the periodic oscillation of the inlet gas flow, and specifically by the choice of the pulsation frequency. Consequently, the structured pattern produced by introducing a pulsed gas flow into a fluidized bed reactor imposes order on a chaotic process, providing an impact on the overall productivity of the system.
Questo lavoro di tesi si pone l’obiettivo di investigare da un punto di vista numerico i reattori catalitici a letto pulsato per comprendere gli effetti della presenza di una struttura ordinata di bolle, generata dall’ingresso di una portata di gas pulsata, sulla produttività del processo. Per predire computazionalmente il comportamento di sistemi catalitici con fluidizzazione pulsata è stato sviluppato il CatalyticCFDEM framework attraverso la combinazione di LIGGGHTS®, per il tracciamento delle particelle che rappresentano la fase solida, e catalyticFOAM per la soluzione delle equazioni di bilancio legate al sistema reattivo. Innanzitutto, il CatalyticCFDEM framework è stato verificato da un punto di vista fluidodinamico, studiando l’influenza della frequenza di pulsazione del gas in ingresso sulla formazione di una struttura ordinata di bolle all’interno del reattore, sull’espansione del letto e sul diametro delle bolle. In aggiunta, è stato esaminato il grado di miscelamento delle particelle nella fase emulsione, studiando parametricamente l’influenza della frequenza della pulsazione del gas, dell’ampiezza adimensionale e della velocità media adimensionale dell’oscillazione in ingresso. In conclusione, tutti i risultati dell’analisi idrodinamica sono stati sfruttati per capire, dal punto di vista reattivo, l’impatto della portata pulsata di gas in ingresso su un reattore catalitico fluidizzato. In particolare, in questo lavoro è stata adottata l’ossidazione dell’idrogeno su platino operata a temperatura ambiente in difetto di ossigeno per investigare le prestazioni dei reattori fluidizzati a letto pulsato. Questa analisi mostra che la conversione dell’ossigeno è profondamente influenzata dalle oscillazioni periodiche del gas in ingresso e nello specifico dalla scelta della frequenza della pulsazione. Conseguentemente, la struttura delle bolle prodotta dall’introduzione di un flusso di gas pulsato all’interno di un letto fluidizzato impone ordine ad un processo che è di natura caotica, influenzando la produttività complessiva del sistema.
Numerical investigation of catalytic pulsed fluidized beds with multiscale reactive particle tracking methodology
CAFARO, DAVIDE
2020/2021
Abstract
This Thesis work investigates from a numerical point of view catalytic pulsed fluidized beds to understand the effects of the presence of a bubble tessellation, formed by the inlet gas pulsation, over the process productivity. To computationally predict the behaviour of catalytic pulsed fluidized systems, the CatalyticCFDEM framework has been developed by combining the LIGGGHTS® based tracking of the solid phase with the solution of catalytic reactions by means of the catalyticFOAM framework. First, the CatalyticCFDEM framework has been assessed from a fluid dynamic point of view by studying the influence of the pulsation frequency over the formation of bubbles structural schemes, particles bed expansion and bubble diameter. In addition, the degree of particles mixing in the emulsion phase has been investigated by parametrically analyse the influence of the pulsation frequency, dimensionless amplitude, and dimensionless mean velocity of the inlet gas flow. Finally, all the outcomes of the hydrodynamics analysis have been adopted to understand, from a reactive point of view, the impact of a pulsed inlet gas flow over a catalytic fluidized bed reactor. In particular, the hydrogen oxidation over Platinum, operated at ambient temperature with oxygen as limiting reactant, has been adopted in this work to investigate the performances of pulsed fluidized beds. This analysis shows that the conversion of the oxygen is deeply affected by the periodic oscillation of the inlet gas flow, and specifically by the choice of the pulsation frequency. Consequently, the structured pattern produced by introducing a pulsed gas flow into a fluidized bed reactor imposes order on a chaotic process, providing an impact on the overall productivity of the system.File | Dimensione | Formato | |
---|---|---|---|
Tesi Davide Cafaro.pdf
non accessibile
Dimensione
3.36 MB
Formato
Adobe PDF
|
3.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/180159