The formation of distant metastases still represents the main cause of cancer related death [Ganesh2021]. Starting from S. Paget “seed and soil” theory, it is now clear that the metastatic dissemination is a non-random event [Guan2015]. In fact, primary tumors selectively metastasize to preferred organs or tissues. An example of this organotropism is the metastatization of breast cancer in the bone microenvironment [Gupta2006], which might be promoted by the high vascularization of bone and by the high immune cell trafficking within this spongy tissue [Esposito2018]. Immune cells are key elements during tumor spread, deeply interacting with cancer cells and influencing each other [Janssen2017], both into the blood stream [Lambert2017] and into the metastatic site, as it happens for bone [Xiang2019]. An important role in this phenomenon is played by the endothelium, which constitutes the physical barrier between circulating immune cells and specific microenvironments. Indeed, the endothelium is deeply involved in several steps of the metastatic cascade [Minami2019, Blazejczyk2015, Fu2018] and recent studies suggested that it might represent a relevant target for anti-tumor treatments based on gene-delivery strategies [Bazan-Peregrino2007]. In this context, the purpose of this PhD thesis is to face the complex problem of breast cancer metastases, in particular breast cancer metastases to bone, focusing on the cancer-immune cell interactions and taking advantage of engineered microfluidic models which empower the development of innovative physiological-like in vitro cultures. The attempt is to focus on some of the most relevant biological elements which contribute to breast cancer metastasis formation and that play a key role into the metastatic microenvironment, in particular endothelial cells and circulating immune cells. These elements have been studied individually, in coculture or in complex 3D multi-culture microfluidic devices, depending on the specific biological processes investigated. Working on the design of the microfluidic devices and on the cellular composition of the models, we were able to mimic specific in vitro microenvironments (e.g. early metastatic niche, metastatic bone) representing key steps of the breast cancer metastasis formation. This approach permitted to investigate the role of platelets and neutrophils which were found to promote the extravasation of circulating cancer cells. Furthermore, an already approved antiplatelet drug was successfully tested to impair this process. The adjustment of the device structure also allowed to develop a vascularized model of an already formed breast cancer metastasis to bone, observing the negative influence of a metastatic-like microenvironment on the quality of the vascular network and the early anti-tumor activity of neutrophils. The possibility to create microvascular networks on a chip also allowed to test the transfection efficiency of non-viral vectors within physiological-like vascular structures, hence suggesting an innovative methodology for the analysis of gene delivery outputs aimed at targeting the endothelium. In conclusion, this doctoral thesis shows how the exploitation of microfluidic models helped in dissecting specific features of the interplay between endothelial, cancer and immune cells during the formation of breast cancer metastases. Starting from the results obtained using an already approved drug for cardiovascular issues, this thesis suggests that complex, human immune-cancer models could be successfully employed for the study of biological mechanisms of metastases or employed for drug screening and drug repurposing studies.
La formazione di metastasi rappresenta ancora la principale causa di morte per cancro [Ganesh2021]. Partendo dalla teoria “seed and soil” di S. Paget, è ormai chiaro che la disseminazione metastatica è un evento non casuale [Guan2015]. Infatti, i tumori primari metastatizzano selettivamente in organi o tessuti preferiti. Un esempio di organotropismo è la metastatizzazione del cancro al seno nel microambiente osseo [Gupta2006], che potrebbe essere promossa dall' elevata vascolarizzazione dell'osso e dalla significativa presenza di cellule immunitarie all'interno del tessuto osseo spongioso [Esposito2018]. Le cellule immunitarie giocano un ruolo chiave durante la diffusione del tumore, interagendo profondamente con le cellule tumorali e si influenzandosi a vicenda [Janssen2017], sia nel flusso sanguigno [Lambert2017] sia nel sito metastatico, come accade per le ossa [Xiang2019]. Un ruolo importante in questo fenomeno è svolto dall'endotelio, che costituisce la barriera fisica tra le cellule immunitarie circolanti e specifici microambienti. Infatti, l'endotelio è profondamente coinvolto in diversi passaggi della cascata metastatica [Minami2019, Blazejczyk2015, Fu2018] e recenti studi hanno suggerito che potrebbe rappresentare un target rilevante per i trattamenti antitumorali basati su strategie di gene-delivery [Bazan-Peregrino2007]. In questo contesto, lo scopo di questa tesi di dottorato è affrontare il complesso problema delle metastasi del cancro al seno, in particolare le metastasi del cancro al seno all'osso, concentrandosi sulle interazioni tra cellule immunitarie e cellule tumorali, sfruttando modelli microfluidici ingegnerizzati che consentono lo sviluppo di innovativi colture in vitro di tipo fisiologico. Si è tentato di concentrarsi su alcuni degli elementi biologici più rilevanti che contribuiscono alla formazione di metastasi del cancro al seno e che svolgono un ruolo chiave nel microambiente metastatico, in particolare le cellule endoteliali e le cellule immunitarie circolanti. Questi elementi sono stati studiati individualmente, in co-culture o in complessi dispositivi microfluidici per multi-colture 3D, a seconda degli specifici processi biologici indagati. Lavorando sulla progettazione dei dispositivi microfluidici e sulla composizione cellulare dei modelli, siamo stati in grado di imitare specifici microambienti in vitro (ad es. nicchia metastatica precoce, osso metastatico) che rappresentano passaggi chiave della formazione delle metastasi del cancro al seno. Questo approccio ha permesso di studiare il ruolo delle piastrine e dei neutrofili che si è scoperto promuovere l’extravasazione delle cellule tumorali circolanti. Inoltre, è stata testata la capacità di un farmaco antipiastrinico, già approvato per l’utilizzo clinico, di compromettere l’extravasazione di cellule tumorali. Il lavoro di progettazione della struttura dei dispositivi microfluidici ha anche permesso di sviluppare un modello vascolarizzato di una metastasi ossea da cancro al seno, osservando l'influenza negativa del microambiente metastatico sulla qualità della rete vascolare e sull'attività antitumorale precoce dei neutrofili. La possibilità di creare reti microvascolari in chip ha anche permesso di testare l'efficienza di trasfezione di vettori non virali all'interno di strutture vascolari di tipo fisiologico, suggerendo quindi una metodologia innovativa per l'analisi degli output di terapie di gene delivery finalizzate a colpire l'endotelio. In conclusione, questa tesi di dottorato mostra come lo sfruttamento di modelli microfluidici abbia aiutato a studiare caratteristiche specifiche dell'interazione tra cellule endoteliali, tumorali e immunitarie durante la formazione di metastasi del cancro al seno. Partendo dai risultati ottenuti utilizzando un farmaco già approvato per problemi cardiovascolari, questa tesi suggerisce che modelli complessi di cancro che includono cellule del sistema immunitario umano possano essere impiegati con successo per lo studio dei meccanismi biologici delle metastasi o per screening di farmaci.
Engineered human microfluidic models of immune-cancer cell interactions in breast cancer metastases
CRIPPA, MARTINA
2021/2022
Abstract
The formation of distant metastases still represents the main cause of cancer related death [Ganesh2021]. Starting from S. Paget “seed and soil” theory, it is now clear that the metastatic dissemination is a non-random event [Guan2015]. In fact, primary tumors selectively metastasize to preferred organs or tissues. An example of this organotropism is the metastatization of breast cancer in the bone microenvironment [Gupta2006], which might be promoted by the high vascularization of bone and by the high immune cell trafficking within this spongy tissue [Esposito2018]. Immune cells are key elements during tumor spread, deeply interacting with cancer cells and influencing each other [Janssen2017], both into the blood stream [Lambert2017] and into the metastatic site, as it happens for bone [Xiang2019]. An important role in this phenomenon is played by the endothelium, which constitutes the physical barrier between circulating immune cells and specific microenvironments. Indeed, the endothelium is deeply involved in several steps of the metastatic cascade [Minami2019, Blazejczyk2015, Fu2018] and recent studies suggested that it might represent a relevant target for anti-tumor treatments based on gene-delivery strategies [Bazan-Peregrino2007]. In this context, the purpose of this PhD thesis is to face the complex problem of breast cancer metastases, in particular breast cancer metastases to bone, focusing on the cancer-immune cell interactions and taking advantage of engineered microfluidic models which empower the development of innovative physiological-like in vitro cultures. The attempt is to focus on some of the most relevant biological elements which contribute to breast cancer metastasis formation and that play a key role into the metastatic microenvironment, in particular endothelial cells and circulating immune cells. These elements have been studied individually, in coculture or in complex 3D multi-culture microfluidic devices, depending on the specific biological processes investigated. Working on the design of the microfluidic devices and on the cellular composition of the models, we were able to mimic specific in vitro microenvironments (e.g. early metastatic niche, metastatic bone) representing key steps of the breast cancer metastasis formation. This approach permitted to investigate the role of platelets and neutrophils which were found to promote the extravasation of circulating cancer cells. Furthermore, an already approved antiplatelet drug was successfully tested to impair this process. The adjustment of the device structure also allowed to develop a vascularized model of an already formed breast cancer metastasis to bone, observing the negative influence of a metastatic-like microenvironment on the quality of the vascular network and the early anti-tumor activity of neutrophils. The possibility to create microvascular networks on a chip also allowed to test the transfection efficiency of non-viral vectors within physiological-like vascular structures, hence suggesting an innovative methodology for the analysis of gene delivery outputs aimed at targeting the endothelium. In conclusion, this doctoral thesis shows how the exploitation of microfluidic models helped in dissecting specific features of the interplay between endothelial, cancer and immune cells during the formation of breast cancer metastases. Starting from the results obtained using an already approved drug for cardiovascular issues, this thesis suggests that complex, human immune-cancer models could be successfully employed for the study of biological mechanisms of metastases or employed for drug screening and drug repurposing studies.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis_MartinaCrippa.pdf
Open Access dal 26/11/2024
Descrizione: PhD Thesis
Dimensione
28.02 MB
Formato
Adobe PDF
|
28.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/180292