In the last years, the evolution and the widespread of curtain walls allowed them to be the predominant element of modern skylines, thanks both to the great architectural versatility and the extremely high performance guaranteed. The design of these complex systems requires the cooperation of various professional roles, including the designer of the load-bearing structure of the façade itself and the FEM modeler; the two figures can coincide. The collaboration between these two professionals is necessary as the elements which curtain wall systems are made of are almost always characterized by geometric shapes not always attributable to the most ordinary forms classically studied with the methods of Construction Science. In this context, the following graduation thesis aims to deepen the current logic of use of finite element techniques (FEA) as a tool aimed at mechanical checks of curtain wall brackets, based on the most recent European regulations (i.e. the Eurocodes). After several studies aimed at returning to the reader a picture as complete as possible about curtain walls, the results of the modeling and analysis of metal façade components will then be reported. The elements considered for the analysis refer to the Generali Tower TCb Zaha Hadid complex, built in Milan in 2017. The metal elements being analysed are made of EN-AW 6061-T6 aluminium alloy. Aluminium constitutive stress-strain bond will be modelled in accordance with the Ramberg-Osgood criterion, extensively described within Eurocode 9 and briefly resumed in the following report. The Ramberg-Osgood criterion was chosen as it is well suited to non-linear analysis, which are particularly suitable in this façade engineering, given the particular geometry of the elements and the evident mechanical overstrength that these components often demonstrate. The ultimate purpose of the paper will be the comparison between the results of non-linear static analysis and those sought by means of the Ultimate Limit State (ULS) procedures, obtained through linear static analysis (conducted with the hypothesis of infinitely elastic material. Thanks to this comparison, it will be possible to highlight the reduced maximum exploitation rate of the material. This data, expressed with specific safety coefficients, will open the doors to a new stage of design, which could be defined as re-design: from this point of view, the geometry of an element could be optimized to obtain a consequent saving in terms weight of the extrusions, but also (to obtain) a better geometric adaptation of the shapes of the components, for a better convergence towards the architectural requirements of overall dimensions.
L’elevata evoluzione e l’ampia diffusione delle facciate continue negli ultimi anni ha permesso che queste riuscissero ad essere l’elemento predominante degli skyline moderni, grazie sia alla grande versatilità architettonica sia alle elevatissime prestazioni garantite. La progettazione di questi complessi sistemi vede la cooperazione di diversi professionisti, tra cui il progettista della struttura portante della facciata e il modellatore FEM, figure che peraltro possono coincidere. La collaborazione tra questi due professionisti si rende necessaria in quanto gli elementi che compongono i sistemi a facciata continua sono pressoché sempre caratterizzati da forme a geometria non sempre riconducibili alle più ordinarie forme classicamente studiate con i metodi della Scienza delle Costruzioni. In quest’ambito, il seguente elaborato di Laurea si pone l’obbiettivo di approfondire le attuali logiche di utilizzo di tecniche ad elementi finiti (FEA) quale strumento finalizzato alle verifiche meccaniche degli staffaggi di facciate continue, sulla base delle più recenti normative europee (i.e. gli Eurocodici). Dopo diversi approfondimenti mirati alla restituzione al lettore di un quadro quanto più completo possibile sulle facciate continue, verranno quindi riportati i risultati delle modellazioni e delle analisi di componenti metallici di facciata. Gli elementi considerati per l’analisi si riferiscono esplicitamente al complesso Generali Tower TCb Zaha Hadid, realizzato a Milano nel 2017. Gli elementi metallici oggetti d’analisi sono realizzati in lega di alluminio EN AW 6061-T6. Il materiale sarà modellato rispettando il legame costitutivo stress-strain in accordo al criterio Ramberg-Osgood, ampiamente descritto all’interno dell’Eurocodice 9 e brevemente ripreso nel seguente elaborato. L’adozione di questo tipo di criterio risiede nella volontà di portare avanti analisi di tipo non lineare, particolarmente adatta in questo ambito, data la particolare geometria degli elementi e la riscontrabile sovraresistenza meccanica che spesso questi componenti dimostrano avere. Lo scopo ultimo dell’elaborato sarà quello di confrontare i risultati dell’analisi statica non lineare con quelli ricercati mediante i procedimenti allo Stato Limite Ultimo, ottenuti tramite analisi lineari statiche condotte con l’ipotesi di materiale infinitamente elastico. Dal confronto tra questi due dati sarà possibile mettere in evidenza il ridotto tasso di sfruttamento massimo del materiale. Questo dato, espresso con appositi coefficienti di sicurezza, andrà ad aprire le porte ad un nuovo stadio di progettazione, che potrebbe essere definita di re-design: in quest’ottica la geometria dell’elemento potrebbe essere ottimizzata per ottenere un conseguente risparmio in termini di peso degli estrusi, ma anche una possibilità di miglior adattamento geometrico delle sagome dei componenti, per una quanto migliore convergenza verso i requisiti architettonici di ingombro.
Analysis of aluminium brackets in facade engineering : elastic-hardening and plastic response. The Generali tower TCB Zaha Hadid case study
Matino, Alessandro
2020/2021
Abstract
In the last years, the evolution and the widespread of curtain walls allowed them to be the predominant element of modern skylines, thanks both to the great architectural versatility and the extremely high performance guaranteed. The design of these complex systems requires the cooperation of various professional roles, including the designer of the load-bearing structure of the façade itself and the FEM modeler; the two figures can coincide. The collaboration between these two professionals is necessary as the elements which curtain wall systems are made of are almost always characterized by geometric shapes not always attributable to the most ordinary forms classically studied with the methods of Construction Science. In this context, the following graduation thesis aims to deepen the current logic of use of finite element techniques (FEA) as a tool aimed at mechanical checks of curtain wall brackets, based on the most recent European regulations (i.e. the Eurocodes). After several studies aimed at returning to the reader a picture as complete as possible about curtain walls, the results of the modeling and analysis of metal façade components will then be reported. The elements considered for the analysis refer to the Generali Tower TCb Zaha Hadid complex, built in Milan in 2017. The metal elements being analysed are made of EN-AW 6061-T6 aluminium alloy. Aluminium constitutive stress-strain bond will be modelled in accordance with the Ramberg-Osgood criterion, extensively described within Eurocode 9 and briefly resumed in the following report. The Ramberg-Osgood criterion was chosen as it is well suited to non-linear analysis, which are particularly suitable in this façade engineering, given the particular geometry of the elements and the evident mechanical overstrength that these components often demonstrate. The ultimate purpose of the paper will be the comparison between the results of non-linear static analysis and those sought by means of the Ultimate Limit State (ULS) procedures, obtained through linear static analysis (conducted with the hypothesis of infinitely elastic material. Thanks to this comparison, it will be possible to highlight the reduced maximum exploitation rate of the material. This data, expressed with specific safety coefficients, will open the doors to a new stage of design, which could be defined as re-design: from this point of view, the geometry of an element could be optimized to obtain a consequent saving in terms weight of the extrusions, but also (to obtain) a better geometric adaptation of the shapes of the components, for a better convergence towards the architectural requirements of overall dimensions.File | Dimensione | Formato | |
---|---|---|---|
ALESSANDRO MATINO_TESI DI LAUREA.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi di Laurea Magistrale in Ingegneria dei Sistemi Edilizi, Autore: Alessandro Matino
Dimensione
27.6 MB
Formato
Adobe PDF
|
27.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/180300