A quarter of today’s oil and gas supply is produced offshore, mostly in the Middle East, the North Sea, Brazil, the Gulf of Mexico and the Caspian Sea. Furthermore, the projections to 2040 highlights how the amount of energy-related offshore activity is poised to increase. In the offshore oil extraction environment pipelines are the arteries of hydrocarbon developments. They transport the hydrocarbon products and other fluids between wells and in-field processing facilities and also to shore. Usually, pipelines interact with shallow sandy soil layers that are often loose and prone to liquefaction. This is the consequence of pore pressure build-up induced by hydrodynamic loading, earthquakes, and/or structural vibrations. When liquefaction occurs, the soil tends to behave as a solid–fluid mixture, possibly unable to constrain pipeline movements. Therefore, pipelines could experience excessive displacement, for instance, in the form of vertical flotation. To date, there are no well-established methods to predict pipe displacement in the event of liquefaction and the subsequent reconsolidation process. Beyond traditional methods for geotechnical stability analyses, this work builds on the previous contribution of Pisano et al. (2020), who proposed a computational fluid dynamics (CFD) approach to study pipeline flotation processes in fluidised soils. However, such CFD approach requires the numerical solution of a complex fluid-structure interaction problem, which seems to be beyond the level of complexity that is normally possible to handle for practical applications – also in terms of computational burden. The present thesis proposes a further simplification of the CFD approach, adopting several analytical (and spreadsheet-friendly) relationships to describe the forces affecting the motion of a floating pipe without resorting to lengthy CFD calculations. The proposed approach is extensively validated against the results of a new set of 2D CFD analyses, as well as against rare data from small-scale pipe flotation tests from the literature. This work is believed to make a valuable contribution with respect to the prediction and assessment of flotation-related risks.
Un quarto delle attuali forniture di greggio e gas naturale viene estratto in contesti offshore; principalmente in Medio Oriente, Mare del Nord, Brasile, Golfo del Messico e Mar Caspio. Inoltre, le proiezioni al 2040 mostrano come la quantità di idrocarburi derivanti da contesti offshore risulterà maggiore. In un contesto offshore di estrazione di idrocarburi, le condotte possono essere considerate le arterie del sistema estrattivo. Le tubazioni trasportano infatti i prodotti del processo dai pozzi alle attrezzature in situ e/o alla terraferma. Generalmente, le condotte si trovano ad interagire con depositi superficiali di sabbie sciolte spesso soggetti a liquefazione. Quest'ultima è conseguenza di un aumento delle pressioni in eccesso indotte da carichi idrodinamici quali onde e tempeste, o da azioni sismiche e/o vibrazioni strutturali. Quando avviene la liquefazione, il materiale tende a comportarsi come una miscela solido-fluido che non sempre è in grado di impedire il movimenti eccessivi delle condotte. Oggi, non esistono metodi consolidati per prevedere lo spostamento delle condotte in caso di liquefazione e durante il conseguente processo riconsolidazione. Superando i metodi geotecnici classici per problemi di stabilità, la tesi si basa sul precedente contributo di Pisano et al. (2020), che ha proposto un approccio fluidodinamico computazionale (CFD) per studiare i processi di flottazione delle tubazioni in terreni fluidificati. In ogni caso questi metodi implicano l'utilizzo di complessi codici numerici che sembrano essere al di là del livello di complessità che normalmente è possibile gestire per applicazioni pratiche – anche in termini di onere computazionale. La presente tesi propone un'ulteriore semplificazione dell'approccio CFD, adottando diverse relazioni analitiche per descrivere le forze che influenzano il movimento di un tubo galleggiante senza ricorrere a lunghi calcoli CFD. L'approccio proposto è stato ampiamente validato rispetto ai risultati di una nuova serie di analisi CFD 2D, nonché rispetto ai rari dati provenienti da test in letteratura inerenti alla flottazione di tubi in piccola scala. Si ritiene che questo lavoro dia un prezioso contributo per quanto riguarda la previsione e la valutazione dei rischi legati al galleggiamento.
Buried offshore pipeline flotation in reconsolidating liquefied sand : a simplified 1D model
Betto, Davide
2020/2021
Abstract
A quarter of today’s oil and gas supply is produced offshore, mostly in the Middle East, the North Sea, Brazil, the Gulf of Mexico and the Caspian Sea. Furthermore, the projections to 2040 highlights how the amount of energy-related offshore activity is poised to increase. In the offshore oil extraction environment pipelines are the arteries of hydrocarbon developments. They transport the hydrocarbon products and other fluids between wells and in-field processing facilities and also to shore. Usually, pipelines interact with shallow sandy soil layers that are often loose and prone to liquefaction. This is the consequence of pore pressure build-up induced by hydrodynamic loading, earthquakes, and/or structural vibrations. When liquefaction occurs, the soil tends to behave as a solid–fluid mixture, possibly unable to constrain pipeline movements. Therefore, pipelines could experience excessive displacement, for instance, in the form of vertical flotation. To date, there are no well-established methods to predict pipe displacement in the event of liquefaction and the subsequent reconsolidation process. Beyond traditional methods for geotechnical stability analyses, this work builds on the previous contribution of Pisano et al. (2020), who proposed a computational fluid dynamics (CFD) approach to study pipeline flotation processes in fluidised soils. However, such CFD approach requires the numerical solution of a complex fluid-structure interaction problem, which seems to be beyond the level of complexity that is normally possible to handle for practical applications – also in terms of computational burden. The present thesis proposes a further simplification of the CFD approach, adopting several analytical (and spreadsheet-friendly) relationships to describe the forces affecting the motion of a floating pipe without resorting to lengthy CFD calculations. The proposed approach is extensively validated against the results of a new set of 2D CFD analyses, as well as against rare data from small-scale pipe flotation tests from the literature. This work is believed to make a valuable contribution with respect to the prediction and assessment of flotation-related risks.File | Dimensione | Formato | |
---|---|---|---|
Betto_Davide_thesis.pdf
non accessibile
Dimensione
13.87 MB
Formato
Adobe PDF
|
13.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182013