Besides the planets in our Solar System, many asteroids and comets populate its inner regions orbiting around the Sun. Some of them are characterised by an orbit which may cross Earth’s one, leading to a non-negligible impact hazard. Such threatening bodies take the name of Near Earth Objects (NEO) and are constantly monitored to detect the potential threats. Several strategies to deflect a dangerous NEO have been studied in past decades. The most simple and effective solution found consists in deflecting the target by means of a Kinetic Impact (KI), where an impactor s/c departs from Earth to intercept the dangerous object. The impulse provided to the target, by means of the collision, leads to an instantaneous perturbation of its orbital motion. This modifies the phasing between Earth and the NEO, increasing so the distance at their close encounter. In this thesis work, the displacement achieved is computed exploiting the proximal motion equations in combination with the Gauss’ planetary equations. This formulation allows having a very fast analysis tool while keeping a good accuracy of the propagation. Since the basic Single Kinetic Impactor strategy (SKI), could fragment the target asteroid due to the excessive energy release at impact, a natural evolution of this concept consists in exploiting multiple less intense collisions to deflect the NEO. This strategy is called Multiple Kinetic Impactor mission (MKI), and, in this dissertation, it is explored in the maximum deflection framework and it is studied through different multi-objective analyses. The MKI will be developed in three main possible configurations which differ in the launch strategy: the MKI-Direct Launch, the MKI-Parking Orbit and the MKI-Carrier. These deflection concepts will be applied to two real asteroids, the 2000SG344 and the 1979XB, and to a synthetic NEOs Population. The MKI strongly improves mankind’s planetary protection capabilities, allowing to safely deflect even smaller threatening asteroids and to increase the deflection of bigger ones without fragmenting the target. This thesis project is part of the project COMPASS "Control for Orbit manoeuvring through perturbations for application to space systems". The COMPASS project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 679086 - COMPASS).
Oltre ai pianeti del nostro Sistema Solare, molti asteroidi e comete popolano le regioni interne orbitando attorno al Sole. Tra questi, alcuni sono caratterizzati da orbite che potrebbero intersecare quella della Terra, generando così una minaccia non trascurabile. Questi oggetti vengono chiamati Oggetti Prossimi alla Terra (NEO) e vengono costantemente monitorati per rilevare potenziali minacce. Numerose strategie per la deflessione dei NEO sono state studiate recentemente. La più semplice ed efficace consiste nel deflettere il bersaglio attraverso un Impatto Cinetico (KI), dove un veicolo spaziale parte dalla Terra per intercettare l’oggetto in questione. L’impulso impartito al bersaglio attraverso la collisione genera una perturbazione istantanea del suo movimento orbitale. Questo ha l’effetto di modificare il sincronismo tra la Terra e il NEO, aumentando così la distanza dell’incontro ravvicinato. In questo lavoro di tesi, la deflessione ottenuta viene calcolata utilizzando le equazioni di moto prossimali in combinazione con le equazioni planetarie di Gauss. Questa formulazione consente di avere uno strumento di analisi molto veloce pur mantenendo una buona accuratezza della propagazione. Siccome la strategia basilare ad Impatto Cinetico Singolo (SKI), ha il rischio di frammentare l’asteroide bersaglio per via di un eccessivo rilascio di energia all’impatto, un’evoluzione naturale di questo concetto consiste nello sfruttare impatti multipli meno intensi per deflettere il NEO. Questa strategia viene chiamata missione ad Impatto Cinetico Multiplo (MKI), e, in questa tesi, viene esplorata nel contesto della massima deflessione e attraverso diverse analisi multi-obiettivo. La strategia MKI verrà sviluppata in tre principali possibili configurazioni che si differenziano per il metodo di lancio: MKI-Lancio diretto, MKI in orbita di parcheggio e MKIVettore. Queste strategie di deflessione verranno applicate a due asteroidi reali, il 2000SG344 e il 1979XB, e ad una popolazione sintetica di NEO. L’MKI migliora notevolmente le capacità di protezione planetaria del genere umano, permettendo di deflettere in sicurezza anche asteroidi pericolosi di dimensioni più ridotte o di aumentare la deflessione di quelli più grandi senza frammentare il bersaglio. Questo lavoro di tesi è parte del progetto COMPASS "Control for Orbit manoeuvring through perturbations for application to space systems". Il progetto COMPASS è finanziato dal Consiglio Europeo della Ricerca (ERC) parte del programma di innovazione e ricerca dell’Unione Europea Horizon 2020 (grant agreement No 679086 - COMPASS).
Multiple kinetic impactor for deflection of potentially hazardous asteroids
Bolzoni, Ivan
2020/2021
Abstract
Besides the planets in our Solar System, many asteroids and comets populate its inner regions orbiting around the Sun. Some of them are characterised by an orbit which may cross Earth’s one, leading to a non-negligible impact hazard. Such threatening bodies take the name of Near Earth Objects (NEO) and are constantly monitored to detect the potential threats. Several strategies to deflect a dangerous NEO have been studied in past decades. The most simple and effective solution found consists in deflecting the target by means of a Kinetic Impact (KI), where an impactor s/c departs from Earth to intercept the dangerous object. The impulse provided to the target, by means of the collision, leads to an instantaneous perturbation of its orbital motion. This modifies the phasing between Earth and the NEO, increasing so the distance at their close encounter. In this thesis work, the displacement achieved is computed exploiting the proximal motion equations in combination with the Gauss’ planetary equations. This formulation allows having a very fast analysis tool while keeping a good accuracy of the propagation. Since the basic Single Kinetic Impactor strategy (SKI), could fragment the target asteroid due to the excessive energy release at impact, a natural evolution of this concept consists in exploiting multiple less intense collisions to deflect the NEO. This strategy is called Multiple Kinetic Impactor mission (MKI), and, in this dissertation, it is explored in the maximum deflection framework and it is studied through different multi-objective analyses. The MKI will be developed in three main possible configurations which differ in the launch strategy: the MKI-Direct Launch, the MKI-Parking Orbit and the MKI-Carrier. These deflection concepts will be applied to two real asteroids, the 2000SG344 and the 1979XB, and to a synthetic NEOs Population. The MKI strongly improves mankind’s planetary protection capabilities, allowing to safely deflect even smaller threatening asteroids and to increase the deflection of bigger ones without fragmenting the target. This thesis project is part of the project COMPASS "Control for Orbit manoeuvring through perturbations for application to space systems". The COMPASS project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 679086 - COMPASS).File | Dimensione | Formato | |
---|---|---|---|
2021_12_Bolzoni.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
15.28 MB
Formato
Adobe PDF
|
15.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182100