Space telescope mirrors are important component because their size and quality is directly linked to telescope performance. They are usually made of ceramic materials like Zerodur® and manufactured by conventional methods like solid-state sintering. In this work, an innovative mirror design has been produced with a binder jet additive manufacturing method starting from an initial design provided by Leonardo. Two ceramic powders were tested, the first one was an aluminium-silicate powder and the second one was pure alumina (Al2O3). Different tests have been run in order to identify the correct material and parameters during the printing and sintering phases. Alumina turned out to be the best material for this application, obtaining a final density of 58% after printing followed by sintering at high temperature. The printed components were analysed with an optical microscope and with a scanning electron microscope to understand their microstructure and possible inhomogeneities. Many samples were tested in three-point bending, returning an average strength of 43.7MPa. In addition, a fracture toughness test has been performed. The data collected from the bending test have been analysed with a two- and three-parameter Weibull distribution that showed the presence of a lower limit of 27MPa (minimum stress below which the probability of breakage is zero). From this, a new mirror design has been formulated using a honeycomb structure and different ribs (a series of FEM analysis have been performed to assess the component). Thanks to the new shape the weight of the mirror has been reduced of the 12.6% due to the reduction of volume (43% less). Finally, a probabilistic assessment was conducted considering the amount of stressed volume in order to define the real strength distribution of the mirrors. To do this, a new beam geometry resembling the shapes that are present in the real mirrors has been printed and tested in order to verify whether a different mechanism of failure was occurring. The 90% volume of the three-point bending specimens, the one of the mirrors and the one of the new beam geometry were computed using Abaqus. From this, the reliability of the initial and final mirrors geometry was computed from the FEM considering a weakest-link theory, obtaining a value of 0.999968 for the new mirror and a value of 0.999960 for the initial one (both made from alumina).
Gli specchi dei telescopi spaziali sono importanti componenti, perché la loro dimensione e qualità superficiale è direttamente correlata alla performance dei telescopi stessi. Solitamente per la loro costruzione vengono impiegati materiali ceramici (come lo Zerodur®), che vengono prodotti tramite metodi convenzionali come la sinterizzazione termomeccanica. In questa tesi, partendo da un design iniziale fornito dall’azienda Leonardo, è stato prodotto uno specchio dalla geometria innovativa tramite l’utilizzo di una stampante 3D a binder jet. Inizialmente sono state testate due differenti polveri, la prima era una polvere di alluminio-silicio, mentre la seconda era pura allumina (Al2O3). Una serie di test sono stati eseguiti per cercare di identificare il materiale migliore e per definire i parametri corretti durante la stampa e la successiva sinterizzazione. Da questi test l’allumina ha ottenuto i risultati migliori per questo tipo di tecnologia di stampa 3D, riportando una densità finale del 58% dopo una sinterizzazione ad alta temperatura. I componenti prodotti sono stati analizzati con un microscopio ottico e con un microscopio elettronico a scansione, per identificare la loro microstruttura e possibili inomogeneità. Un numero elevato di componenti è stato stampato per eseguire delle prove a flessione a tre punti, ottenendo un valore medio di resistenza di 43.7 MPa. Inoltre, sono stati eseguiti dei test per determinare la resistenza a frattura del materiale. Tutti i dati provenienti dalle prove a flessione sono stati analizzati con una distribuzione di Weibull a due e tre parametri per determinare l’andamento della resistenza. Da ciò è stato possibile definire un limite inferiore di 27 MPa (al di sotto di questo sforzo la probabilità di rottura è zero). In seguito, è stata formulata una geometria innovativa per lo specchio usando una struttura a nido d’ape e varie nervature (per verificarne la resistenza sono state eseguite una serie di analisi FEM). Grazie a questa nuova geometria il peso dello specchio è stato ridotto del 12.6% attraverso una riduzione del 43% di volume. Infine, è stata eseguita un’analisi probabilistica per definire la reale distribuzione della resistenza degli specchi, considerando la quantità di volume sottoposta a sforzi elevati. Per fare ciò è stata stampata una barretta contenete delle geometrie presenti nello specchio, per capire se a causa di queste forme il meccanismo di rottura cambiasse. Quindi è stato calcolato il volume 90% degli specchi, del provino sottoposto a flessione e della barretta tramite Abaqus. Da ciò, è stato possibile calcolare l’affidabilità dello specchio iniziale e di quello finale usando la teoria weakest-link, ottenendo un valore di 0.999968 per lo specchio finale e un valore di 0.999960 per quello iniziale (entrambi prodotti in allumina).
Mechanical characterisation of a ceramic substrate for space mirrors manufactured with binder jetting technique
BERTONI, FRANCESCO
2020/2021
Abstract
Space telescope mirrors are important component because their size and quality is directly linked to telescope performance. They are usually made of ceramic materials like Zerodur® and manufactured by conventional methods like solid-state sintering. In this work, an innovative mirror design has been produced with a binder jet additive manufacturing method starting from an initial design provided by Leonardo. Two ceramic powders were tested, the first one was an aluminium-silicate powder and the second one was pure alumina (Al2O3). Different tests have been run in order to identify the correct material and parameters during the printing and sintering phases. Alumina turned out to be the best material for this application, obtaining a final density of 58% after printing followed by sintering at high temperature. The printed components were analysed with an optical microscope and with a scanning electron microscope to understand their microstructure and possible inhomogeneities. Many samples were tested in three-point bending, returning an average strength of 43.7MPa. In addition, a fracture toughness test has been performed. The data collected from the bending test have been analysed with a two- and three-parameter Weibull distribution that showed the presence of a lower limit of 27MPa (minimum stress below which the probability of breakage is zero). From this, a new mirror design has been formulated using a honeycomb structure and different ribs (a series of FEM analysis have been performed to assess the component). Thanks to the new shape the weight of the mirror has been reduced of the 12.6% due to the reduction of volume (43% less). Finally, a probabilistic assessment was conducted considering the amount of stressed volume in order to define the real strength distribution of the mirrors. To do this, a new beam geometry resembling the shapes that are present in the real mirrors has been printed and tested in order to verify whether a different mechanism of failure was occurring. The 90% volume of the three-point bending specimens, the one of the mirrors and the one of the new beam geometry were computed using Abaqus. From this, the reliability of the initial and final mirrors geometry was computed from the FEM considering a weakest-link theory, obtaining a value of 0.999968 for the new mirror and a value of 0.999960 for the initial one (both made from alumina).| File | Dimensione | Formato | |
|---|---|---|---|
|
2021_12_Bertoni.pdf
non accessibile
Descrizione: Tesi e sommario esteso
Dimensione
19.22 MB
Formato
Adobe PDF
|
19.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182314