Modern and future high precision pointing space missions face increasingly high challenges related to the widespread use of large flexible structures. The development of new modeling tools which are able to account for the multidisciplinary nature of this problem becomes extremely relevant in order to meet both structure and control performance criteria. This thesis proposes a novel methodology to analytically model large truss structures in a sub-structuring framework. A first result is represented by a novel analytical inversion procedure proposed to obtain a clamped-clamped beam model, solving previous channel inversion issues. A three dimensional unit cube element has then been designed and validated with a Finite Element commercial software. This model is composed by multiple two-dimensional sub-mechanisms assembled using block-diagram models. This element constitutes the building block for constructing complex truss structures by multiple repetitions of the model. The accurate vibrational description of the system and its minimal representation, as well as the possibility of accounting for parametric uncertainties in its mechanical parameters, make it an appropriate tool to perform robust Structure/Control co-design. Finally, in order to demonstrate the strengths of the proposed approach, a structure/control co-design study case for active microvibration control is proposed by combining a multidisciplinary optimization approach based on the particle swarm algorithm and multiple structured robust $H_infty$ synthesis. This has been used to optimize the pointing performances of an high pointing antenna, minimizing the perturbations coming from the Solar Array Mechanisms (SADM) of two solar panels, performing active perturbation rejection by means of multiple proof mass actuators, and simultaneously reduce the mass of the truss-structure which connects the antenna to the main spacecraft body. As a result, the optimized design drastically reduces the structural mass while complying with the strict pointing requirements, demonstrating the power of the approach and the effectiveness of the newly introduced structural tools for microvibration assessment.
L'utilizzo sempre più frequente di grandi strutture flessibili a bordo delle moderne missioni spaziali lancia sfide sempre più complesse a tutti i satelliti che prevedono puntamento ad alta precisione. Sviluppare dei metodi di modellizazione capaci di affrontare questo dominio interdisciplinare diventa quindi imperativo al fine di far fronte a requisiti strutturali e di puntamento sempre più stringenti. Questo lavoro propone quindi una nuova tecnica per ottenere modelli analitici di meccanismi attraverso un approccio sub-strutturale. Un primo risultato è costituito dall'introduzione di una nuova tecnica di inversione capace di restituire modelli di trave incastrata ad entrambe le estremità. Un elemento cubico tridimensionale, composto da molteplici meccanismi bidimensionali, è stato poi introdotto e validato usando i risultati di un software ad elementi finiti. Questo elemento rappresenta un blocco costruttivo base per la costruzione di complesse strutture reticolari. Un'accurata descrizione della dinamica vibrazionale, unita ad una rappresentazione minimale e alla capacità di parametrizzare completamente ogni sua proprietà fisica rendono questo modello uno strumento adatto al co-design struttura/controllore. Un caso studio di questo co-design è stato quindi presentato con l'obiettivo di compiere controllo attivo delle microvibrazioni in presenza di incertezze parametriche e di amplificazioni dovute a strutture flessibili. Questo è stato possibile grazie ad un'ottimizzazione multidisciplinare che ha combinato un algoritmo particle swarm e molteplici sintesi $H_infty$ strutturate e robuste. In particolare, grazie ad una serie di attuatori lineari extit{Proof-Mass-Actuators}, le vibrazioni introdotte dai meccanismi di guida dei pannelli solari (SADM) vengono minimizzate per limitare il jitter a livello di un'antenna ad alta precisione, mentre allo stesso tempo l'intera massa del supporto dell'antenna viene ottimizzata. Il design ottimizzato ha visto una drastica riduzione della massa imbarcata, garantendo contemporanemante tutti i requisiti di puntamento. Questo dimostra l'efficacia dell'approccio proposto e la validità dei nuovi strumenti di progettazione per applicazioni di co-design strutturale e mitigazione attiva di microvibrazioni, anche in presenza di incertezze parametriche.
Multi-body modeling of large space truss structures for structure/control optimization for micro-vibration mitigation
FINOZZI, ANTONIO
2020/2021
Abstract
Modern and future high precision pointing space missions face increasingly high challenges related to the widespread use of large flexible structures. The development of new modeling tools which are able to account for the multidisciplinary nature of this problem becomes extremely relevant in order to meet both structure and control performance criteria. This thesis proposes a novel methodology to analytically model large truss structures in a sub-structuring framework. A first result is represented by a novel analytical inversion procedure proposed to obtain a clamped-clamped beam model, solving previous channel inversion issues. A three dimensional unit cube element has then been designed and validated with a Finite Element commercial software. This model is composed by multiple two-dimensional sub-mechanisms assembled using block-diagram models. This element constitutes the building block for constructing complex truss structures by multiple repetitions of the model. The accurate vibrational description of the system and its minimal representation, as well as the possibility of accounting for parametric uncertainties in its mechanical parameters, make it an appropriate tool to perform robust Structure/Control co-design. Finally, in order to demonstrate the strengths of the proposed approach, a structure/control co-design study case for active microvibration control is proposed by combining a multidisciplinary optimization approach based on the particle swarm algorithm and multiple structured robust $H_infty$ synthesis. This has been used to optimize the pointing performances of an high pointing antenna, minimizing the perturbations coming from the Solar Array Mechanisms (SADM) of two solar panels, performing active perturbation rejection by means of multiple proof mass actuators, and simultaneously reduce the mass of the truss-structure which connects the antenna to the main spacecraft body. As a result, the optimized design drastically reduces the structural mass while complying with the strict pointing requirements, demonstrating the power of the approach and the effectiveness of the newly introduced structural tools for microvibration assessment.File | Dimensione | Formato | |
---|---|---|---|
Finozzi_Thesis_10386895.pdf
accessibile in internet per tutti
Dimensione
7.41 MB
Formato
Adobe PDF
|
7.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182320