So far, the security of current cryptographic protocols has been based on the high computational complexity needed to break them. However, this strategy is threatened by the future development of Quantum computers, which will exhibit exceptional computational power and algorithm capabilities. The most promising ultimate solution is Quantum Key Distribution (QKD), which holds the potential of sharing unconditionally secure symmetric keys thanks to the fundamental principles of quantum physics. Up to now, QKD has been developed mainly by using dedicated dark-fiber, but its widespread diffusion demands the integration into already deployed optical infrastructures, addressing the co-propagation with several high-power classical information channels. In this work, the coexistence between QKD and classical communication is analysed. Firstly, the exploitation of different wavelength bands for QKD and telecommunication signals is proposed in order to strongly limit the insurgence of classical/QKD interference. Then, the analysis is focused on the impact of the most detrimental non-linear effect in such conditions: the spontaneous Raman scattering. An experimental characterization is performed for standard single-mode (SSM) and non-zero dispersion shifted (NZD) fibers, verifying that the latter generate less noise photons. The efficiency of Raman generation is experimentally studied both in O-band and S-band considering classical channels placed in the C-band, as in already deployed optical networks. The performance of a QKD prototype is evaluated for different fiber lengths with and without 35 co-propagating wavelength-division-multiplexed (WDM) classical channels. Finally, a simulation tool is developed to evaluate the capabilities of an integrated QKD/classical system in terms of secret-key rate.
La sicurezza degli attuali protocolli crittografici è basata sull'elevata complessità computazionale necessaria per violarli. Questo approccio è tuttavia minacciato dal futuro sviluppo dei computer quantistici, che gioveranno di eccezionale potenza di calcolo e algoritmi specifici. La soluzione più promettente è la Quantum Key Distribution (QKD), che permette di condividere chiavi simmetriche incondizionatamente sicure grazie ai principi fondamentali della fisica quantistica. Ad ora, la QKD è stata sviluppata perlopiù usando fibre ottiche dedicate. Una sua diffusione capillare richiede però l'integrazione nelle reti ottiche già implementate, fronteggiando la co-propagazione con diversi canali di informazione classici ad alta potenza. Nel presente elaborato si analizza la coesistenza tra QKD e comunicazione classica. Inizialmente si propone l'utilizzo di diverse bande di lunghezze d'onda per la QKD e i segnali dati al fine di ridurre fortemente l'interferenza tra essi. Successivamente, l'analisi si concentra sull'impatto dell'effetto ottico non lineare più dannoso per questi sistemi: lo scattering Raman spontaneo. Si è dunque eseguita la caratterizzazione sperimentale per fibre standard single-mode (SSM) e non-zero dispersion shifted (NZD) e si è verificato che le seconde generano meno fotoni di rumore. L'efficienza di generazione Raman viene sperimentalmente studiata sia in banda O che in banda S, considerando canali classici posti in banda C come nelle attuali reti ottiche. Sono inoltre valutate le performance di un prototipo QKD per diverse lunghezze di fibra in presenza e assenza di 35 canali classici co-propaganti multiplati in divisione di lunghezza d'onda. Infine un tool simulativo è sviluppato per analizzare le capacità di un sistema integrato di QKD e comunicazioni classiche in termini di rate di generazione di chiave segreta.
Impact of Raman effect on integrated quantum-classical communication systems
Gagliano, Alessandro
2020/2021
Abstract
So far, the security of current cryptographic protocols has been based on the high computational complexity needed to break them. However, this strategy is threatened by the future development of Quantum computers, which will exhibit exceptional computational power and algorithm capabilities. The most promising ultimate solution is Quantum Key Distribution (QKD), which holds the potential of sharing unconditionally secure symmetric keys thanks to the fundamental principles of quantum physics. Up to now, QKD has been developed mainly by using dedicated dark-fiber, but its widespread diffusion demands the integration into already deployed optical infrastructures, addressing the co-propagation with several high-power classical information channels. In this work, the coexistence between QKD and classical communication is analysed. Firstly, the exploitation of different wavelength bands for QKD and telecommunication signals is proposed in order to strongly limit the insurgence of classical/QKD interference. Then, the analysis is focused on the impact of the most detrimental non-linear effect in such conditions: the spontaneous Raman scattering. An experimental characterization is performed for standard single-mode (SSM) and non-zero dispersion shifted (NZD) fibers, verifying that the latter generate less noise photons. The efficiency of Raman generation is experimentally studied both in O-band and S-band considering classical channels placed in the C-band, as in already deployed optical networks. The performance of a QKD prototype is evaluated for different fiber lengths with and without 35 co-propagating wavelength-division-multiplexed (WDM) classical channels. Finally, a simulation tool is developed to evaluate the capabilities of an integrated QKD/classical system in terms of secret-key rate.File | Dimensione | Formato | |
---|---|---|---|
2021_12_Gagliano.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.43 MB
Formato
Adobe PDF
|
3.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182374