The upcoming Asteroid Impact and Deflection Assessment (AIDA) collaboration between NASA and ESA will perform a kinetic impact experiment on the secondary asteroid of the binary system Didymos and characterization of the impact effects. The European segment, called Hera, is responsible of the following in-situ investigation and will carry as opportunity payload the CubeSats Milani and Juventas. To increase the scientific gain obtainable the possibility to land on the secondary, called Dimorphos, is considered as disposal option for the CubeSats. This MSc Thesis is focused on modeling and simulation of Milani’s final ballistic descent to the surface of the asteroid and following contact motion up to rest on it or escape; in order to investigate the disposal feasibility and infer performances and trends in the satellite’s behaviour during motion. The approach is general and can be applied to other study cases. Due to the high uncertainty on target’s physical properties, assumptions are necessary, based on other asteroids data and previous studies. The software used is Project Chrono and its built-in algorithms for dynamics integration, with respect to a body-fixed rotating frame on the target, and collision detection and solution are exploited. The main bodies of the simulated environment are Milani real shape and Dimorphos asteroid tri-axial ellipsoid with convex hulls randomly put on a limited surface area reproducing rocks, to investigate the effect of a rough terrain on satellite’s motion. The dynamical environment is defined by the primary asteroid central gravity perturbed by spherical harmonics, Dimorphos shape-based gravity, apparent rotation forces and contact impulsive interactions between the rigid and elastic surfaces of satellite structure and soil. The statistical analysis, carried out simulating different scenarios, showed landing feasibility, requirements and expected performances, mainly in terms of settling time and dispersion area. Considerations are made on the impact velocity to successfully land, on the expected bouncing motion and on the coefficient of restitution effect; trends in the results are discussed and compared with the literature.
L’imminente collaborazione AIDA, Asteroid Impact and Deflection Assessment, tra NASA ed ESA effettuerà un esperimento di impatto cinetico sull’asteroide secondario del sistema binario Didymos e caratterizzazione degli effetti dello stesso. La missione Europea, chiamata Hera, è responsabile della fase di osservazione in loco e trasporterà tra il suo carico utile i CubeSat Milani e Juventas. Per aumentare il ritorno scientifico ottenibile si sta considerando l’opzione di terminare la missione con un atterraggio dei CubeSat sul corpo secondario, Dimorphos. Questo lavoro di tesi riguarda la modellazione e la simulazione della finale discesa passiva di Milani sull’asteroide e il seguente moto di contatto fino ad arresto o fuga; con lo scopo di studiare la fattibilità dell’operazione e dedurre prestazioni e tendenze nel comportamento del satellite durante il moto. L’approccio è generale e applicabile ad altri casi di studio. Il software usato è Project Chrono, di cui si sfruttano gli algoritmi interni per l’integrazione della dinamica, rispetto a un sistema di riferimento rotante fissato al target, e per il rilevamento e la soluzione delle collisioni. I corpi principali dell’ambiente simulato sono Milani, nella sua forma reale, e l’asteroide Dimorphos reso come ellissoide tri-assiale con elementi simulati su un’area limitata della superficie per riprodurre rocce, così da studiare gli effetti di un terreno irregolare sul moto di Milani. L’ambiente dinamico è definito dal campo di gravità centrale perturbato con armoniche sferiche del primario, dalla gravità generata dal corpo ellissoidale di Dimorphos, dalle forze apparenti di rotazione e dalle interazioni impulsive di contatto tra le superfici rigide ed elastiche della struttura del satellite e del suolo. L’analisi statistica, effettuata simulando diversi scenari, ha mostrato la fattibilità dell’atterraggio, requisiti e prestazioni attese, per lo più in termini di tempo d’arresto e area di dispersione. Considerazioni sono fatte sulla velocità d’impatto per atterrare, sul moto di rimbalzo atteso e sull’effetto del coefficiente di restituzione; tendenze nei risultati sono discusse e paragonate ai dati in letteratura.
Modeling and simulation of Milani CubeSat contact motion on the surface of the secondary asteroid of Didymos binary system
RUSCONI, MARTINA
2020/2021
Abstract
The upcoming Asteroid Impact and Deflection Assessment (AIDA) collaboration between NASA and ESA will perform a kinetic impact experiment on the secondary asteroid of the binary system Didymos and characterization of the impact effects. The European segment, called Hera, is responsible of the following in-situ investigation and will carry as opportunity payload the CubeSats Milani and Juventas. To increase the scientific gain obtainable the possibility to land on the secondary, called Dimorphos, is considered as disposal option for the CubeSats. This MSc Thesis is focused on modeling and simulation of Milani’s final ballistic descent to the surface of the asteroid and following contact motion up to rest on it or escape; in order to investigate the disposal feasibility and infer performances and trends in the satellite’s behaviour during motion. The approach is general and can be applied to other study cases. Due to the high uncertainty on target’s physical properties, assumptions are necessary, based on other asteroids data and previous studies. The software used is Project Chrono and its built-in algorithms for dynamics integration, with respect to a body-fixed rotating frame on the target, and collision detection and solution are exploited. The main bodies of the simulated environment are Milani real shape and Dimorphos asteroid tri-axial ellipsoid with convex hulls randomly put on a limited surface area reproducing rocks, to investigate the effect of a rough terrain on satellite’s motion. The dynamical environment is defined by the primary asteroid central gravity perturbed by spherical harmonics, Dimorphos shape-based gravity, apparent rotation forces and contact impulsive interactions between the rigid and elastic surfaces of satellite structure and soil. The statistical analysis, carried out simulating different scenarios, showed landing feasibility, requirements and expected performances, mainly in terms of settling time and dispersion area. Considerations are made on the impact velocity to successfully land, on the expected bouncing motion and on the coefficient of restitution effect; trends in the results are discussed and compared with the literature.File | Dimensione | Formato | |
---|---|---|---|
2021_12_Rusconi.pdf
Open Access dal 19/11/2022
Descrizione: Executive Summary and Thesis
Dimensione
20.53 MB
Formato
Adobe PDF
|
20.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182442