In the global search for energy harvesting systems from sustainable power sources, great interest has been recently aroused by the bioelectrochemical synthesis of hydrogen and methane, in a power-to-gas concept. The challenge for developing such a complex technology mostly focuses on materials, environmental conditions, and the microbial pool. The use of single strains and hyperthermophilic conditions are a possible innovative way to make electrochemical systems simpler to manage and efficient. Thermotoga neapolitana are hyperthermophilic bacteria that can metabolize glucose in hydrogen and lactate, two interesting compounds from the industrial and energetic point of view. The choice of materials for electrodes and their interactions with microorganisms remain critical issues. This work investigates Reduced Titanium Oxide (RTO) in comparison with Carbon cloth (CC) and commercial Boron Doped Diamond (BDD) as anodes in hyperthermophilic bioelectrochemical systems operating at 80°C by Thermotoga neapolitana. Two samples of RTO were synthesized by plasma electrolytic oxidation (PEO) of titanium plates and subsequent electrochemical reduction. Electrochemical performance of CC, BDD, and RTO were tested by performing cyclic voltammetry in the anodic region (0-1 V vs Ag/AgCl, 50 mV/s), in abiotic and biotic conditions. The surface of colonized materials was observed by SEM microscopy. Results show that bacteria fast settle on all tested material, significantly affecting their electrochemical conductivity. The integration of voltammetric cycles reveals that biofilm generates capacitive effects on the anodic surfaces, particularly evident in RTO, less in CC and absent in BDD. Charge densities provided by capacitive response of RTO and CC are of the order of 5.58 and 0.77 mC/cm2, respectively. Bacterial affinity with the electrodes is confirmed by SEM observation. On the cathodic side, CC electrodes have been used, proving that polarization favors microbial metabolism leading to a higher production of hydrogen and metabolites. Moreover, it is demonstrated that lactate production by Thermotoga neapolitana, hence a deviation from the normal metabolic pathway, is possible in these conditions.
Nella sfida globale per la realizzazione di sistemi efficienti per la conversione di energia proveniente da fonti rinnovabili, un interesse sempre maggiore si sta destando verso la sintesi di idrogeno e metano per via elettrochimica. Le sfide che questi sistemi complessi propongono riguardano principalmente i materiali, i parametri operativi e il consorzio microbico. L’utilizzo di singoli ceppi in condizioni ipertermofile è un modo alternativo per rendere il sistema bioelettrochimico più efficiente e semplice da gestire. I Thermotoga neapolitana sono batteri ipertermofili in grado di metabolizzare il glucosio in lattato e idrogeno, due composti interessanti da un punto di vista industriale ed energetico. La scelta dei materiali e la loro interazione con i batteri rimangono aspetti critici. In questo lavoro si propone lo studio di ossidi di titanio ridotto (RTO) in confronto a tessuto di carbone (CC) e boron doped diamond (BDD) commerciale, usati come anodi in un sistema bioelettrochimico ipertermofilo operante alla temperatura di 80°C con Thermotoga neapolitana. I campioni di RTO sono stati sintetizzati tramite anodizzazione al plasma (PEO) di piastrine di titanio e successiva riduzione elettrochimica, ed inseguito caratterizzati con voltammetrie cicliche e cronoamperometrie potenziostatiche. Il comportamento elettrochimico di RTO, CC e BDD è stato testato tramite ciclovoltammetrie eseguite nel mezzo di coltura, in condizioni abiotiche e biotiche. L’integrazione delle curve suggerisce che il biofilm formatosi sulla superficie dell’elettrodo produce effetti capacitivi, particolarmente evidenti in RTO, meno pronunciati in CC e assenti in BDD. La densità di carica fornita dalla risposta capacitiva di RTO e CC è nell’ordine di 5.58 e 0.77 mC/cm2, rispettivamente. L’affinità tra batteri ed elettrodi è confermata da analisi SEM. Nella zona catodica, elettrodi di CC sono stati utilizzati, dimostrando che la polarizzazione favorisce il metabolismo microbico inducendo una maggiore produzione di idrogeno e metaboliti. Inoltre, si dimostra che la produzione di lattato da Thermotoga neapolitana, quindi la deviazione dalla normale via metabolica, può essere stimolata in queste condizioni.
Electrochemical behavior of anodic materials for bioelectrochemical systems
MALAVOLTA, LAURA
2020/2021
Abstract
In the global search for energy harvesting systems from sustainable power sources, great interest has been recently aroused by the bioelectrochemical synthesis of hydrogen and methane, in a power-to-gas concept. The challenge for developing such a complex technology mostly focuses on materials, environmental conditions, and the microbial pool. The use of single strains and hyperthermophilic conditions are a possible innovative way to make electrochemical systems simpler to manage and efficient. Thermotoga neapolitana are hyperthermophilic bacteria that can metabolize glucose in hydrogen and lactate, two interesting compounds from the industrial and energetic point of view. The choice of materials for electrodes and their interactions with microorganisms remain critical issues. This work investigates Reduced Titanium Oxide (RTO) in comparison with Carbon cloth (CC) and commercial Boron Doped Diamond (BDD) as anodes in hyperthermophilic bioelectrochemical systems operating at 80°C by Thermotoga neapolitana. Two samples of RTO were synthesized by plasma electrolytic oxidation (PEO) of titanium plates and subsequent electrochemical reduction. Electrochemical performance of CC, BDD, and RTO were tested by performing cyclic voltammetry in the anodic region (0-1 V vs Ag/AgCl, 50 mV/s), in abiotic and biotic conditions. The surface of colonized materials was observed by SEM microscopy. Results show that bacteria fast settle on all tested material, significantly affecting their electrochemical conductivity. The integration of voltammetric cycles reveals that biofilm generates capacitive effects on the anodic surfaces, particularly evident in RTO, less in CC and absent in BDD. Charge densities provided by capacitive response of RTO and CC are of the order of 5.58 and 0.77 mC/cm2, respectively. Bacterial affinity with the electrodes is confirmed by SEM observation. On the cathodic side, CC electrodes have been used, proving that polarization favors microbial metabolism leading to a higher production of hydrogen and metabolites. Moreover, it is demonstrated that lactate production by Thermotoga neapolitana, hence a deviation from the normal metabolic pathway, is possible in these conditions.File | Dimensione | Formato | |
---|---|---|---|
2021_12_Malavolta_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
17 MB
Formato
Adobe PDF
|
17 MB | Adobe PDF | Visualizza/Apri |
2021_12_Malavolta_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
4.52 MB
Formato
Adobe PDF
|
4.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182788