Hematopoietic stem cells (HSCs) are a rare population of cells capable of self-renewal and differentiation. They primarily reside in the bone marrow (BM), the site where all the adult blood cells are generated in a complex mechanism called hematopoiesis. This intricate microenvironment contains a complex set of cellular, chemical, structural, and physical cues necessary to maintain the viability and function of the hematopoietic system, facilitating a delicate balance between self-renewal and differentiation. Yet, understanding the physiological and pathological biology of the bone marrow remain difficult due to the high level of complexity which govern the hematopoietic process. Therefore, the development of accurate in vitro models is critical for a further understanding of the fundamental biology of the BM. Here, we designed and validated a microfluidic platform for the study of the HSCs behavior when cultured in a three-dimensional microenvironment resembling the BM complexity. The microfluidic device comprises three fluidic channels filled with fibrin gel for the compartmentalized co-culture of HSCs with mesenchymal stem cells (MSCs), and two additional lateral channels for the supply of the culture medium. We demonstrated that the conceived device could support the single culture of MSCs and HSCs, preserving their viability. We then showed that 3D co-culture of HSCs with MSCs enabled by the device supports HSCs stemness and differentiation capacity, maintaining a higher ratio of primitive subpopulation of HSCs (i.e. Common Myeloid Progenitors) as compared to 2D controls and single HSC 3D culture. Overall, the designed microfluidic device could be used to better understand BM physiology and disease states under specific culture conditions, opening new opportunities in the BM and, specifically, in HSCs research.
Le cellule staminali ematopoietiche sono cellule rare che hanno la capacità di auto rinnovarsi e di differenziarsi in tutte le cellule della componente corpuscolata del sangue. Sono presenti all’interno del midollo osseo, dove si differenziano grazie ad un intricato processo chiamato ematopoiesi. Il midollo osseo è un tessuto complesso, contenente un ampio spettro di segnali cellulari, chimici, fisici e strutturali necessari per mantenere le cellule ematopoietiche vitali e funzionali e per regolare il corretto rapporto tra auto-rinnovamento e differenziazione. Dato il numero elevato di elementi in gioco, è molto complesso comprendere la biologia dei processi che governano l’ematopoiesi. La realizzazione di un accurato modello che riprenda le principali caratteristiche e funzionalità del midollo, è quindi essenziale per l’efficace comprensione della sua fisiologia e patologia. In questo progetto è stato realizzato e validato un dispositivo microfluidico con lo scopo di studiare il comportamento delle cellule ematopoietiche all’interno di un ambiente tridimensionale che possa al più mimare la complessità del midollo osseo. Il dispositivo comprende 3 canali, contenenti una matrice di gel di fibrina in cui sono seminate separatamente le cellule ematopoietiche e mesenchimali, e due ulteriori canali laterali utilizzati per fornire i nutrienti necessari attraverso il mezzo di coltura. Abbiamo dimostrato, quindi, che il dispositivo da noi realizzato permette le singole colture delle cellule mesenchimali ed ematopoietiche preservandone la vitalità, e che, all’interno della matrice tridimensionale, le cellule ematopoietiche in co-coltura con le mesenchimali preservino la loro staminalità ed il loro potenziale differenziativo, mantenendo una più alta percentuale di cellule ad elevato potenziale differenziativo (i.e. progenitori comuni delle cellule mieloidi) rispetto alla coltura in 2D o alla coltura singola di cellule ematopoietiche. Per quanto appena detto, possiamo quindi concludere che il dispositivo realizzato possa essere utilizzato per lo studio dei processi fisiologici e patologici che avvengono all’interno del midollo osseo aprendo quindi la possibilità di nuove opportunità per la ricerca sul midollo e, in particolare, sulle cellule staminali ematopoietiche.
Towards the bone marrow on chip : development of a microfluidic platform for the co-culture of mesenchymal and hematopoietic stem cells in a three-dimensional microenvironment
Avventi, Cecilia
2020/2021
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells capable of self-renewal and differentiation. They primarily reside in the bone marrow (BM), the site where all the adult blood cells are generated in a complex mechanism called hematopoiesis. This intricate microenvironment contains a complex set of cellular, chemical, structural, and physical cues necessary to maintain the viability and function of the hematopoietic system, facilitating a delicate balance between self-renewal and differentiation. Yet, understanding the physiological and pathological biology of the bone marrow remain difficult due to the high level of complexity which govern the hematopoietic process. Therefore, the development of accurate in vitro models is critical for a further understanding of the fundamental biology of the BM. Here, we designed and validated a microfluidic platform for the study of the HSCs behavior when cultured in a three-dimensional microenvironment resembling the BM complexity. The microfluidic device comprises three fluidic channels filled with fibrin gel for the compartmentalized co-culture of HSCs with mesenchymal stem cells (MSCs), and two additional lateral channels for the supply of the culture medium. We demonstrated that the conceived device could support the single culture of MSCs and HSCs, preserving their viability. We then showed that 3D co-culture of HSCs with MSCs enabled by the device supports HSCs stemness and differentiation capacity, maintaining a higher ratio of primitive subpopulation of HSCs (i.e. Common Myeloid Progenitors) as compared to 2D controls and single HSC 3D culture. Overall, the designed microfluidic device could be used to better understand BM physiology and disease states under specific culture conditions, opening new opportunities in the BM and, specifically, in HSCs research.File | Dimensione | Formato | |
---|---|---|---|
2021_12_Avventi.pdf
non accessibile
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/182973