In this work, partially developed at TU-Wien under the co-supervision of Prof. C. Bucher during the 2021 summer semester, new design strategies for a new type of structural control device will be introduced. The simplicity of the installation of such an instrument could allow for a large scale diffusion and a more effective reduction of the seismic vulnerability of the built environment. The device, named "NextGenTMD", is a hysteretic-behaviour version of the linear tuned mass damper. Design aims at overcoming the loss of tuning and effectiveness that would occur on normal buildings limiting the applicability of the existing linear version to tall, flexible structures, long span bridges or to other contexts that are closer to the one for which these devices were initially developed (vehicle stabilisation). The work is focused on a four-storey reinforced concrete building that is representative of the most common construction typology of the last decades in many seismic prone areas. The building and results from a full-scale seismic test performed on it are described in chapter 2. In chapter 3 the standard design strategies for the linear dynamic absorber are presented and, starting from them, a simplified design strategy for the NextGenTMD is developed. In chapter 4 the most innovative part of the work will be described. In particular, a new automated design method based on numerical optimisation algorithms (Genetic Algorithms) will be proposed, inspired by the most recent design strategies for structural optimisation that are employed with success for the development of high-end technologies in various engineering branches. Differently than the other methods available in literature, that only consider the reduction of the structural displacement, the proposed one allows to perform multi-objective design for the optimisation of any structural motion quantity of interest thus resulting more versatile and applicable to standard and special purposes buildings. The effectiveness of the solutions obtained with the design methods introduced in chapter 3 and chapter 4 is verified in chapter 5 through numerical simulations. Results suggest that the device is able to remain tuned following the evolution of the structural frequency of vibration. Moreover, by verifying the time history response as per Eurocode 8, it is observed that the device is able to prevent the building from reaching the damage limit state showing its effectiveness with respect to the case where the device is not mounted on the building.
Nel presente lavoro di tesi, parzialmente svolto presso la TU-Wien sotto la cosupervisione del prof. C. Bucher durante il semestre estivo 2021, vengono proposti degli innovativi metodi di progetto per un nuovo tipo di dispositivo di controllo strutturale, la cui semplicità di installazione ne consenta una diffusione su larga scala volta a ridurre la vulnerabilità sismica del costruito. L'apparecchio, denominato "NextGenTMD", è una variante a comportamento non lineare dello smorzatore lineare a massa accordata (tuned mass damper). La progettazione mira a superare la perdita di accordatura ed efficacia sulle strutture normali che limita l'impiego della tipologia al momento esistente ai soli edifici alti e flessibili, i ponti a campata lunga o ad altre applicazioni più vicine al contesto di sviluppo iniziale (stabilizzazione di veicoli). Il lavoro di tesi sarà svolto prendendo a riferimento un edificio in calcestruzzo armato a quattro piani rappresentativo della tipologia costruttiva più diffusa degli ultimi decenni in molte zone esposte a rischio sismico, che vene descritto insieme ai test dinamici su modello in scala 1:1 nel secondo capitolo. Il terzo capitolo del lavoro sarà invece dedicato alla descrizione dei metodi di progettazione dell'oscillatore lineare e, partendo da questi, alla derivazione di un metodo di progetto semplificato. Nel quarto capitolo, invece, verrà descritta la parte più innovativa del lavoro, ovvero la messa a punto di un metodo di progetto automatizzato basato su algoritmi di ottimizzazione numerico-strutturale (algoritmi genetici) che negli ultimi anni hanno trovato impiego nello sviluppo di tecnologie innovative in vari settori dell'ingegneria. A differenza degli altri metodi esistenti in letteratura, che sono rivolti al controllo dello spostamento strutturale, il metodo proposto consente di progettare per una qualsiasi delle quantità di interesse della risposta dinamica strutturale, includendo la possibilit à di una progettazione multi-obiettivo che rende il dispositivo applicabile a edi ci normali e ad uso speciale. L'efficacia delle diverse soluzioni ottenute con i metodi dei capitoli 3 e 4 è analizzata nel capitolo 5 attraverso delle simulazioni numeriche. In particolare, si dimostra che il dispositivo è in grado di mantenere l'accordatura seguendo la variazione della frequenza propria dell'edificio. Inoltre, verificando la risposta temporale come prescritto dall' Eurocodice 8, si osserva che il raggiungimento dello stato limite di danno viene efficacemente impedito rispetto al caso in cui l'assorbitore non è presente.
Development and validation of new design strategies for optimal passive non detuning mass dampers
Grillo, Giampierobruno
2020/2021
Abstract
In this work, partially developed at TU-Wien under the co-supervision of Prof. C. Bucher during the 2021 summer semester, new design strategies for a new type of structural control device will be introduced. The simplicity of the installation of such an instrument could allow for a large scale diffusion and a more effective reduction of the seismic vulnerability of the built environment. The device, named "NextGenTMD", is a hysteretic-behaviour version of the linear tuned mass damper. Design aims at overcoming the loss of tuning and effectiveness that would occur on normal buildings limiting the applicability of the existing linear version to tall, flexible structures, long span bridges or to other contexts that are closer to the one for which these devices were initially developed (vehicle stabilisation). The work is focused on a four-storey reinforced concrete building that is representative of the most common construction typology of the last decades in many seismic prone areas. The building and results from a full-scale seismic test performed on it are described in chapter 2. In chapter 3 the standard design strategies for the linear dynamic absorber are presented and, starting from them, a simplified design strategy for the NextGenTMD is developed. In chapter 4 the most innovative part of the work will be described. In particular, a new automated design method based on numerical optimisation algorithms (Genetic Algorithms) will be proposed, inspired by the most recent design strategies for structural optimisation that are employed with success for the development of high-end technologies in various engineering branches. Differently than the other methods available in literature, that only consider the reduction of the structural displacement, the proposed one allows to perform multi-objective design for the optimisation of any structural motion quantity of interest thus resulting more versatile and applicable to standard and special purposes buildings. The effectiveness of the solutions obtained with the design methods introduced in chapter 3 and chapter 4 is verified in chapter 5 through numerical simulations. Results suggest that the device is able to remain tuned following the evolution of the structural frequency of vibration. Moreover, by verifying the time history response as per Eurocode 8, it is observed that the device is able to prevent the building from reaching the damage limit state showing its effectiveness with respect to the case where the device is not mounted on the building.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Grillo_921101_W6.pdf
non accessibile
Dimensione
8.01 MB
Formato
Adobe PDF
|
8.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/183093