Acoustic metamaterials (AMMs) and phononic crystals (PCs) define two classes of periodic composite structures able to tailor the propagation of waves through band gaps, i.e. frequency ranges in which the propagation of sound and elastic waves is forbidden. Until now, the band gap optimization to reach the desired frequency range for vibration reduction has been performed on passive PCs and AMMs. Hence, the band gap properties can not be changed anymore after the production process. This problem can be overcome with the use of active metamaterials and phononic crystals. In this thesis, both material and geometric non-linearities are exploited to actively tune the band gap frequency range of some AMMs and PCs. Considering structures characterized by a two-dimensional periodicity, different strategies have been found to be very effective for a consistent increase of the band gap width in a controllable way. In particular, buckling is able to create a new periodic pattern that has been found to open new band gaps and to increase their width once the critical strain for the instability is overcome. Then, the use of magnetorheological and electrorheological elastomers reveals their ability to shift the band gaps toward higher frequencies and to increase a little the width of the band gaps when electric and magnetic fields are applied. Piezoelectric materials connected to a capacitor have been also treated and the results clearly show the beneficial effect on the band gap width when the capacitance is appropriately regulated. These results have been found in great accordance with the works in the literature. Finally, an acoustic metamaterial characterized by a three dimensional periodicity has been treated with a piezoelectric hyperelastic material model to explore new ways to actively tune the band gaps.
I metamateriali acustici (AMM) e i cristalli fononici (PC) definiscono due classi di strutture composite periodiche in grado di modificare la propagazione delle onde attraverso dei gap di banda, ossia intervalli di frequenza in cui le onde sonore ed elastiche non propagano. Fino ad adesso, l’ottimizzazione del gap di banda per raggiugere il range di frequenze desiderato per ridurre le vibrazioni è stata eseguita su cristalli fononici e metamateriali acustici passivi. Pertanto, le proprietà del band gap non possono più essere modificate una volta prodotto il manufatto. Questo problema può essere superato con l’uso di metamateriali e cristalli fononici attivi. In questa tesi, vengono sfruttate sia le non linearità del materiale che quelle geometriche per modulare il gap di banda di alcuni cristalli fononici e metamateriali acustici. Considerando strutture caratterizzate da una periodicità bidimensionale, diverse strategie si sono rivelate molto efficaci per un consistente aumento della larghezza del gap di banda. In particolare, il buckling è in grado di creare un nuovo pattern periodico capace di aprire nuovi gap di banda e aumentarne la larghezza una volta superata la deformazione critica necessaria per l’instabilità. Dopodichè, l’utilizzo di elastomeri magnetoreologici ed elettroreologici ha dimostrato la loro capacità sia di traslare i gap di banda verso frequenze più elevate che di aumentarne un po’ la larghezza quando vengono applicati campi elettrici e magnetici. Sono stati inoltre trattati materiali piezoelettrici collegati ad un condensatore ed i risultati mostrano chiaramente l’effetto benefico sulla larghezza del gap di banda quando la capacità viene opportunamente regolata. I risultati ottenuti sono stati trovati anche in grande accordo con i dati in letteratura. Infine, un metamateriale acustico caratterizzato da una periodicità tridimensionale è stato trattato con un modello di materiale iperelastico piezoelettrico per esplorare nuovi modi per modulare in modo attivo i gap di banda.
Effect of geometric and material nonlinearities on the dispersion properties of piezoelectric metamaterials
Calegaro, Daniel
2020/2021
Abstract
Acoustic metamaterials (AMMs) and phononic crystals (PCs) define two classes of periodic composite structures able to tailor the propagation of waves through band gaps, i.e. frequency ranges in which the propagation of sound and elastic waves is forbidden. Until now, the band gap optimization to reach the desired frequency range for vibration reduction has been performed on passive PCs and AMMs. Hence, the band gap properties can not be changed anymore after the production process. This problem can be overcome with the use of active metamaterials and phononic crystals. In this thesis, both material and geometric non-linearities are exploited to actively tune the band gap frequency range of some AMMs and PCs. Considering structures characterized by a two-dimensional periodicity, different strategies have been found to be very effective for a consistent increase of the band gap width in a controllable way. In particular, buckling is able to create a new periodic pattern that has been found to open new band gaps and to increase their width once the critical strain for the instability is overcome. Then, the use of magnetorheological and electrorheological elastomers reveals their ability to shift the band gaps toward higher frequencies and to increase a little the width of the band gaps when electric and magnetic fields are applied. Piezoelectric materials connected to a capacitor have been also treated and the results clearly show the beneficial effect on the band gap width when the capacitance is appropriately regulated. These results have been found in great accordance with the works in the literature. Finally, an acoustic metamaterial characterized by a three dimensional periodicity has been treated with a piezoelectric hyperelastic material model to explore new ways to actively tune the band gaps.File | Dimensione | Formato | |
---|---|---|---|
2021_dicembre_Calegaro.pdf
accessibile in internet per tutti
Dimensione
25.55 MB
Formato
Adobe PDF
|
25.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/183606