The Fatigue Behavior of Additively Manufactured components is still a source of interest for many academic institutes. Concerning Laser Powder Bed Fusion (L-PBF) processes, it has been demonstrated that the fatigue life of “as-built” components strongly depends on their build orientation with respect to the substrate plate. In particular, an inclined build orientation is a source of surface irregularities, which are more evident in the case of down-skin surfaces. It was proved that surface roughness is the major cause for a lower fatigue limit: it leads to several micro-notches which thereby act as stress concentration features. Additionally, recent studies confirmed that the deepest valleys associated to the rough surfaces are critical points from which cracks initiate and propagate even faster than from internal defects. The present work considers the effect of the building orientation (horizontal, 45° and 135°) on “as-built” Ti-6Al-4V fatigue behavior, additively manufactured via Selective Laser Melting (SLM). Moreover, the impact of a printed geometrical waviness profile is considered too. Two different approaches will be adopted for assessing the fatigue strength coming from the experimental results: Critical-distance approach; Fracture Mechanics approach. The latter is based at a first approximation on the Murakami’s model of a major single defect causing the failure. A fatigue limit will be assessed for each tested series, by the adoption of the Kitagawa-Takahashi diagram described by the El-Haddad’s model. The second Fracture Mechanics methodology is based on the Murakami’s equivalent size for periodic cracks: the interference of valleys of the rough profile will be taken into account by means of a shielding factor depending on the roughness parameters R_v and R_sm. A completely different approach is offered by the critical-distance method: it is based on the idea of evaluating the local stress values at the deepest and most critical valley of the rough profile at a certain distance from the surface. Such distance is related to El-Haddad’s parameter a0 for short cracks. In the following analysis, a Finite Element Analysis (FEA) will be executed prior to the local stress values evaluation. At the end, the predictions by different methods will be compared with the results of the bending fatigue tests.
Il comportamento a fatica dei componenti stampati in Additive Manufacturing è ancora motivo di interesse per molti istituti accademici. Per quanto concerne i processi di “Laser Powder Bed Fusion” (L-PBF), è stato dimostrato che la resistenza alla fatica dei componenti “as-built” dipende fortemente dalla loro orientazione durante il processo di stampa. In particolare, un’orientazione di stampa inclinata è origine di irregolarità superficiali, che sono più evidenti nel caso di superfici “down-skin”. È stato provato che la rugosità superficiale è la maggior causa di un limite di fatica ridotto: essa porta a molti micro-intagli che agiscono come fattori di concentrazione di sforzo. Inoltre, recenti studi hanno confermato che le valli di rugosità più profonde sono punti critici per l’innesco e la propagazione di cricche ancor più velocemente rispetto alle cricche innescate dai difetti interni. Il presente elaborato considera l’effetto dell’orientazione di stampa (orizzontale, 45° e 135°) sul comportamento a fatica del materiale Ti-6Al-4V nella condizione “as-built”, stampato attraverso il processo “Selective Laser Melting” (SLM). In aggiunta, l’impatto di un profilo geometricamente ondulato viene considerato. Due differenti approcci saranno adottati per valutare il limite a fatica ottenuto dai risultati sperimentali: Approccio della distanza critica; Approccio della meccanica della frattura; Quest’ultimo è basato in prima approssimazione sul modello di Murakami riguardo un difetto singolo principale come causa di rottura. Il limite a fatica verrà valutato per ogni singola serie testata per il tramite dei diagrammi di Kitagawa-Takahashi, descritti dal modello di El-Haddad. La seconda metodologia sempre nell’ambito della Meccanica della Frattura è basata sulla dimensione equivalente, secondo Murakami, nel caso di cricche periodiche: l’interferenza di valli del profilo rugoso saranno prese in considerazione attraverso il fattore di “shielding” (ovvero “mascheramento”), dipendente dai parametri di rugosità R_v e R_sm. Un approccio completamente differente viene offerto dal metodo della “distanza critica”: esso è basato sul concetto di valutare lo sforzo locale ad una certa distanza dalla superficie in corrispondenza delle valli più profonde e più critiche. Tale distanza dipende dal parametro a_0 di El-Haddad per cricche corte. Nell’analisi seguente, un’analisi a elementi finiti (FEA) sarà eseguita preventiva alla valutazione dello sforzo locale. Infine, le previsioni ottenute da tali metodi differenti saranno comparate con i risultati ottenuti dai test a fatica a momento flettente.
Fatigue behaviour of additively manufactured net-shape Ti-6Al-4V alloy in different orientations
Gennari, Luca
2020/2021
Abstract
The Fatigue Behavior of Additively Manufactured components is still a source of interest for many academic institutes. Concerning Laser Powder Bed Fusion (L-PBF) processes, it has been demonstrated that the fatigue life of “as-built” components strongly depends on their build orientation with respect to the substrate plate. In particular, an inclined build orientation is a source of surface irregularities, which are more evident in the case of down-skin surfaces. It was proved that surface roughness is the major cause for a lower fatigue limit: it leads to several micro-notches which thereby act as stress concentration features. Additionally, recent studies confirmed that the deepest valleys associated to the rough surfaces are critical points from which cracks initiate and propagate even faster than from internal defects. The present work considers the effect of the building orientation (horizontal, 45° and 135°) on “as-built” Ti-6Al-4V fatigue behavior, additively manufactured via Selective Laser Melting (SLM). Moreover, the impact of a printed geometrical waviness profile is considered too. Two different approaches will be adopted for assessing the fatigue strength coming from the experimental results: Critical-distance approach; Fracture Mechanics approach. The latter is based at a first approximation on the Murakami’s model of a major single defect causing the failure. A fatigue limit will be assessed for each tested series, by the adoption of the Kitagawa-Takahashi diagram described by the El-Haddad’s model. The second Fracture Mechanics methodology is based on the Murakami’s equivalent size for periodic cracks: the interference of valleys of the rough profile will be taken into account by means of a shielding factor depending on the roughness parameters R_v and R_sm. A completely different approach is offered by the critical-distance method: it is based on the idea of evaluating the local stress values at the deepest and most critical valley of the rough profile at a certain distance from the surface. Such distance is related to El-Haddad’s parameter a0 for short cracks. In the following analysis, a Finite Element Analysis (FEA) will be executed prior to the local stress values evaluation. At the end, the predictions by different methods will be compared with the results of the bending fatigue tests.| File | Dimensione | Formato | |
|---|---|---|---|
|
2021_12_Gennari.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi Magistrale di Luca Gennari - 21/12/2021
Dimensione
11.84 MB
Formato
Adobe PDF
|
11.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/183618