Under high burnup condition and low temperature (local burnup greater than 50 GWd tU-1 and local temperature lower than 1000°C), in the nuclear fuel, a restructuring process takes place leading to the formation of a novel structure knows as high burnup structure (HBS). The necessity to predict the thermo-mechanical behavior of the fuel rods at extended burnups and to guarantee the safety in case of accidental scenarios has led to the development of models able to describe HBS. Along with economics interest of increasing burnup, HBS modelling results mandatory because the microstructural changes induced, play a role in fine fuel fragmentation phenomenon during accidental transients. HBS in its initial formation phase, where there is a great population of recrystallisation grains, and the final phase (restructuring complete), where large (micrometric) pores are formed, seems to significantly contribute into initiating fine fuel fragmentation. Currently, several state-of-the-art models are available for the description of HBS, ranging from more empirical to more mechanistic approaches. In this thesis work, a selection of these models has been implemented in the SCIANTIX code, a meso-scale 0-D open-source software, designed to be coupled with fuel performance codes (FPCs). The main outcome of the work is thus the added capability of the SCIANTIX code, being able to describe HBS formation, the associated intra-granular fission gas (xenon) depletion, and the evolution of inter-granular pores. The implementation of physics-based models describing the HBS pore evolution required the development of a dedicated numerical scheme, since the prediction of the moments of the pore-size distribution implies the need to consider non-linear terms. The agreement with experimental data results satisfactory with the contribution of non-linear parameters appearing negligible within the range of effective burnup considered. The work is completed by an uncertainty analysis focused on fission gas depletion, since the gas retained in the fuel matrix can be correlated to fuel fragmentation during loss of coolant accidents. The analysis highlights that semi-empirical models can be more reliable, suggesting a better applicability in safety criteria definitions.
In condizioni di elevato burnup e bassa temperatura (burnup locale > 50 GWd tU-1, temperatura locale < 1000°C), nel combustibile nucleare avviene un processo di ristrutturazione che porta alla formazione di una struttura chiamata high burnup structure (HBS). La necessità di predire il comportamento termo-meccanico delle barre di combustibile a burnup estesi e di garantire la sicurezza in caso di situazioni incidentali, ha portato allo sviluppo di modelli capaci di descrivere il comportamento dell’HBS. Accanto agli interessi economici nell’ aumento del burnup, la modellizzazione dell’HBS risulta d’obbligo perché i cambiamenti microstrutturali indotti giocano un ruolo nella frammentazione fine del combustibile durante transienti incidentali. L’HBS in fase iniziale di formazione, dove vi è una gran popolazione di grani in ricristallizzazione, e in fase finale (a ristrutturazione completa), dove grandi pori (micrometrici) si sono formati, sembrano contribuire significativamente all’avvio della frammentazione. Attualmente, molteplici modelli sono disponibili per descrivere l’HBS, muovendosi da approcci empirici a più fisici. In questo lavoro di tesi una selezione di questi modelli è stata implementata nel codice SCIANTIX, un software open-source, mesoscala e 0-D, progettato per essere accoppiato con codici di prestazione del combustibile. Il principale risultato ingegneristico del lavoro è quindi l’aggiunta in SCIANTIX della capacità di descrivere la formazione dell’HBS, l’associato svuotamento intra-granulare di gas di fissione (xenon) e l’evoluzione dei pori inter-granulari. L’implementazione di modelli fisici per la descrizione dell’evoluzione dei pori nell’HBS ha richiesto lo sviluppo di uno schema numerico dedicato per trattare i termini non lineari. L’accordo con i dati sperimentali è soddisfacente e il contributo dei parametri non lineari risulta trascurabile nel range di burnup effettivo di interesse. Il lavoro è completato mediante un’analisi di incertezza incentrata sulla concentrazione di gas intra-granulare poiché è correlata alla frammentazione fine in caso di incidenti. L’analisi ha messo in mostra che i modelli semi-empirici possono presentare una miglior applicabilità nella definizione di margini di sicurezza.
Modelling high burnup structure formation and evolution in SCIANTIX
Meleqi, Bertin
2020/2021
Abstract
Under high burnup condition and low temperature (local burnup greater than 50 GWd tU-1 and local temperature lower than 1000°C), in the nuclear fuel, a restructuring process takes place leading to the formation of a novel structure knows as high burnup structure (HBS). The necessity to predict the thermo-mechanical behavior of the fuel rods at extended burnups and to guarantee the safety in case of accidental scenarios has led to the development of models able to describe HBS. Along with economics interest of increasing burnup, HBS modelling results mandatory because the microstructural changes induced, play a role in fine fuel fragmentation phenomenon during accidental transients. HBS in its initial formation phase, where there is a great population of recrystallisation grains, and the final phase (restructuring complete), where large (micrometric) pores are formed, seems to significantly contribute into initiating fine fuel fragmentation. Currently, several state-of-the-art models are available for the description of HBS, ranging from more empirical to more mechanistic approaches. In this thesis work, a selection of these models has been implemented in the SCIANTIX code, a meso-scale 0-D open-source software, designed to be coupled with fuel performance codes (FPCs). The main outcome of the work is thus the added capability of the SCIANTIX code, being able to describe HBS formation, the associated intra-granular fission gas (xenon) depletion, and the evolution of inter-granular pores. The implementation of physics-based models describing the HBS pore evolution required the development of a dedicated numerical scheme, since the prediction of the moments of the pore-size distribution implies the need to consider non-linear terms. The agreement with experimental data results satisfactory with the contribution of non-linear parameters appearing negligible within the range of effective burnup considered. The work is completed by an uncertainty analysis focused on fission gas depletion, since the gas retained in the fuel matrix can be correlated to fuel fragmentation during loss of coolant accidents. The analysis highlights that semi-empirical models can be more reliable, suggesting a better applicability in safety criteria definitions.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Bertin_Meleqi_Dec_2021.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary + Thesis
Dimensione
5.49 MB
Formato
Adobe PDF
|
5.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/183654