Photonic Integrated Circuits (PICs) are a widely used platform for classical communication and today they are leading the advances in optical quantum processing and computation. In the context of an ever-growing need for techniques to realise such circuits, Femtosecond Laser Micromachining (FLM) offers a rapid and cost-effective solution for the fabrication of PICs with transversal advantages with respect to standard platforms based on planar processes. Universal Photonic Processors (UPPs) are photonic integrated devices capable of implementing an arbitrary unitary transformation between the input and output states of light. A necessary requirement for the operation of UPPs in applications is the ability to reconfigure the chip on demand. In FLM, this is achieved by fabricating a set of electrical microheaters, deposited over the waveguides, in such a way that the phases of the light signal are modulated by exploiting the thermo-optic effect. As the number of light modes at the input of an UPP increases, so does the number of microheaters and the complexity of the circuit's layout; therefore, it becomes increasingly difficult to calibrate independently the effect of each microheater and operate them effectively in applications. In this work we introduce a general procedure for the calibration of an UPP fabricated through FLM featuring a square layout, with focus on the case of a 6-mode UPP. In addition, we use the results of this procedure to operate this UPP for its intended purpose of transformation implementation, implementing switching matrices - useful to route optical signals across the outputs - as well as generic Haar random matrices. We extract an average fidelity of 0.99536 ± 0.00077 on switching matrices and 0.89076 ± 0.04660 on the Haar random.
I Circuiti Fotonici Integrati (CFI) sono una piattaforma largamente usata per le telecomunicazioni e oggi guidano gli avanzamenti nell'ottica quantistica e nella computazione quantistica. Nel contesto di un bisogno sempre crescente di realizzare tali circuiti, la Scrittura Laser a Femtosecondi (SLF) offre una soluzione rapida ed efficiente per la fabbricazione di CFI offrendo vantaggi trasversali rispetto alle piattaforme standard basate su processi planari. I Processori Fotonici Universali (PFU) sono dispositivi fotonici integrati capaci di implementare una trasformazione unitaria qualsiasi fra gli stati quantici della luce tra ingresso e uscita. Un requisito necessario per operare i PFU nelle applicazioni è l'abilità di riconfigurare il chip. In SLF, è possibile fabbricare dei micro-riscaldatori elettronici depositati sopra le guide d'onda, in modo che le fasi del segnale ottico siano modulate attraverso l'effetto termo-ottico. Aumentando il numero di modi in ingresso al PFU aumentano anche il numero di micro-riscaldatori e la complessità del dispositivo; per questi motivi diventa sempre più difficile calibrare indipendentemente l'effetto di ciascun micro-riscaldatore ed operarli in modo efficace per le applicazioni. In questo lavoro introduciamo un metodo generale per la calibrazione di un PFU fabbricato con SLF in una configurazione quadrata, con attenzione al caso di un PFU a 6 modi. Inoltre, utilizziamo i risultati di questa procedura per operare il PFU per il suo utilizzo primario di implementazione matrici, implementando matrici di switching - utili per dirigere il segnale da un ingresso verso le varie uscite - e generiche matrici random Haar. Troviamo una fidelity media di 0.99536 ± 0.00077 per le matrici di switching e 0.89076 ± 0.04660 per le Haar random.
Universal photonic processors : calibration and operation of a 6-mode device
Di GIANO, NIKI
2020/2021
Abstract
Photonic Integrated Circuits (PICs) are a widely used platform for classical communication and today they are leading the advances in optical quantum processing and computation. In the context of an ever-growing need for techniques to realise such circuits, Femtosecond Laser Micromachining (FLM) offers a rapid and cost-effective solution for the fabrication of PICs with transversal advantages with respect to standard platforms based on planar processes. Universal Photonic Processors (UPPs) are photonic integrated devices capable of implementing an arbitrary unitary transformation between the input and output states of light. A necessary requirement for the operation of UPPs in applications is the ability to reconfigure the chip on demand. In FLM, this is achieved by fabricating a set of electrical microheaters, deposited over the waveguides, in such a way that the phases of the light signal are modulated by exploiting the thermo-optic effect. As the number of light modes at the input of an UPP increases, so does the number of microheaters and the complexity of the circuit's layout; therefore, it becomes increasingly difficult to calibrate independently the effect of each microheater and operate them effectively in applications. In this work we introduce a general procedure for the calibration of an UPP fabricated through FLM featuring a square layout, with focus on the case of a 6-mode UPP. In addition, we use the results of this procedure to operate this UPP for its intended purpose of transformation implementation, implementing switching matrices - useful to route optical signals across the outputs - as well as generic Haar random matrices. We extract an average fidelity of 0.99536 ± 0.00077 on switching matrices and 0.89076 ± 0.04660 on the Haar random.File | Dimensione | Formato | |
---|---|---|---|
Di_Giano_2021_Universal_Photonic_Processors.pdf
accessibile in internet per tutti
Descrizione: Main Document
Dimensione
6.24 MB
Formato
Adobe PDF
|
6.24 MB | Adobe PDF | Visualizza/Apri |
Di_Giano_2021_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
505.76 kB
Formato
Adobe PDF
|
505.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/185821