The rapid growth of the space debris population is leading to an increment in satellite proximity events. The Geostationary Orbit (GEO) region is less populated than the Low Earth Orbit (LEO) regime, but the debris density is still high, despite the difference in the absolute number of satellite belonging to the two regions. In particular, the increasing number of spacecraft reaching their end-of-life and the existing debris, such as rocket bodies, could threaten operative satellites and may require on-board Collision avoidance Maneuver (CAM) planning in the near future. Moreover, in this peculiar regime, spacecraft are subjected to gravitational perturbations that cause satellites to cross the assigned geostationary slot delimited by sharp latitude and longitude limits. To overcome this issue, ad-hoc control strategies are adopted to keep the spacecraft within the specified boundaries through station-keeping maneuvers. Currently, the state-of-the-art treats CAMs and station-keeping as separate problems. This thesis illustrates how to embed both maneuvers, executed with a low-thrust propulsion system, into an analytical and time-efficient design policy. First of all, an extension of previous similar work in LEO has been carried out to GEO considering a pure Keplerian motion. Several firing strategies have been envisaged such as the North-South and East-West energy-optimal maneuvers, typical of station-keeping. Then, with the inclusion of geopotential perturbation in the CAM design, a station-keeping maneuver has been formulated as a Multi-Point Boundary Value Problem (MPBVP) with specific constraints on Probability of Collision (PoC) at Time of Closest Approach (TCA) and final state. In particular, two solutions have been investigated: the first one considers two sub Optimal Control Problems (OCPs) linked at TCA by the orbital state continuity condition; the second one is instead thought as a single OCP. In both cases, the idea is to leverage the motion linearization by way of the state transition matrix (STM) and to transform the energy-optimal control problem into an Initial Value Problem. The problem-solution can distinguish between two possible scenarios. On one hand, station-keeping alone is enough to ensure a PoC lower than a safeguard limit. On the other hand, when this requirement is not met, the algorithm autonomously identifies the best strategy for commanding CAM and station-keeping by imposing an arbitrary PoC at TCA. Results show that the maneuver is designed with a reduced computational time burden suitable for on-board CAM planning and the required equivalent velocity variation is strongly influenced by the maneuvering time windows.
La rapida crescita della popolazione di detriti spaziali comporta un aumento della probabilità di collisione fra questi e i satelliti attivi. La regione delle orbite Geostazionarie è meno popolata di quella delle orbite basse, ma la densità di detriti rimane elevata, nonostante la differenza nel numero assoluto di satelliti appartenenti a queste regioni. In particolare, il numero crescente di satelliti che raggiungo la fine della loro vita operativa, che si somma al numero di detriti già esistenti, come stadi di razzi, può diventare una minaccia importante per i satelliti operativi. Questo potrebbe richiedere l’esecuzione di una manovra anticollisione a bordo. In questo regime orbitale particolare, gli oggetti sono soggetti a perturbazioni gravitazionali che possono causare un cambio del moto del satellite tale da violare lo slot a lui assegnato caratterizzato da precisi valori di latitudine e longitudine. Per poter far fronte a questo problema, è necessario adottare strategie ad-hoc di modo da mantenere il satellite confinato all’interno dello slot assegnato attraverso manovre di station-keeping. Riguardo a questo, la letteratura propone delle strategie per l’esecuzione delle manovre anticollisione e di station-keeping separatamente, mentre l’obiettivo di questa tesi è quello di illustrare come combinare le due. In particolare, queste vengono eseguite con un sistema propulsivo di tipo low-thrust perseguendo una formulazione analitica ed efficiente dal punto di vista computazionale. Innanzitutto, si procede con un’estensione di una trattazione simile in regime LEO al caso GEO considerando un moto puramente Kepleriano. In particolare, sono state considerate due strategie per l’esecuzione del controllo: in direzione Nord-Sud ed Est-Ovest, che rappresentano le direzioni principali delle manovre di station-keeping. Successivamente, considerando l’introduzione del contributo perturbativo dell’accelerazione legata al geopotentiale, è stato possibile formulare un Multi-Point Boundary Value Problem per il design della manovra anticollisione insieme a quella di station-keeping. In particolare, questa formulazione permette di introdurre dei vincoli specifici sulla Probabilità di Collisione (PoC) al momento dell’approccio ravvicinato (TCA) e sullo stato finale. In questo contesto sono state sviluppate due soluzioni: la prima considera due sotto problemi di controllo ottimo connessi a TCA attraverso la condizione di continuità dello stato; nel secondo caso invece si considera un singolo problema di controllo ottimo. In entrambi i casi, l’idea è quella di procedere linearizzando il moto attraverso l’utilizzo della state transition matrix (STM) e trasformare il problema di controllo in un Initial Value Problem. La soluzione del problema distingue due scenari possibili: il caso in cui la manovra di station-keeping da sola è sufficiente ad assicurare un valore di PoC sufficientemente basso; oppure, quando questo non si verifica, e quindi è necessario eseguire sia la manovra anticollisione che quella di station-keeping imponendo un valore arbitrario di PoC a TCA. I risultati dimostrano che il tempo computazione è adatto per l’esecuzione a bordo e che la variazione di velocità richiesta è fortemente influenzata dall’istante di manovra.
Numerically efficient methods for low-thrust collision avoidance maneuver design in GEO regime
CANTONI, ALEXIA
2020/2021
Abstract
The rapid growth of the space debris population is leading to an increment in satellite proximity events. The Geostationary Orbit (GEO) region is less populated than the Low Earth Orbit (LEO) regime, but the debris density is still high, despite the difference in the absolute number of satellite belonging to the two regions. In particular, the increasing number of spacecraft reaching their end-of-life and the existing debris, such as rocket bodies, could threaten operative satellites and may require on-board Collision avoidance Maneuver (CAM) planning in the near future. Moreover, in this peculiar regime, spacecraft are subjected to gravitational perturbations that cause satellites to cross the assigned geostationary slot delimited by sharp latitude and longitude limits. To overcome this issue, ad-hoc control strategies are adopted to keep the spacecraft within the specified boundaries through station-keeping maneuvers. Currently, the state-of-the-art treats CAMs and station-keeping as separate problems. This thesis illustrates how to embed both maneuvers, executed with a low-thrust propulsion system, into an analytical and time-efficient design policy. First of all, an extension of previous similar work in LEO has been carried out to GEO considering a pure Keplerian motion. Several firing strategies have been envisaged such as the North-South and East-West energy-optimal maneuvers, typical of station-keeping. Then, with the inclusion of geopotential perturbation in the CAM design, a station-keeping maneuver has been formulated as a Multi-Point Boundary Value Problem (MPBVP) with specific constraints on Probability of Collision (PoC) at Time of Closest Approach (TCA) and final state. In particular, two solutions have been investigated: the first one considers two sub Optimal Control Problems (OCPs) linked at TCA by the orbital state continuity condition; the second one is instead thought as a single OCP. In both cases, the idea is to leverage the motion linearization by way of the state transition matrix (STM) and to transform the energy-optimal control problem into an Initial Value Problem. The problem-solution can distinguish between two possible scenarios. On one hand, station-keeping alone is enough to ensure a PoC lower than a safeguard limit. On the other hand, when this requirement is not met, the algorithm autonomously identifies the best strategy for commanding CAM and station-keeping by imposing an arbitrary PoC at TCA. Results show that the maneuver is designed with a reduced computational time burden suitable for on-board CAM planning and the required equivalent velocity variation is strongly influenced by the maneuvering time windows.File | Dimensione | Formato | |
---|---|---|---|
Tesi_CantoniAlexia.pdf
accessibile in internet per tutti
Dimensione
6.56 MB
Formato
Adobe PDF
|
6.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/185887