In the last few decades, facades have become the parts that most aesthetically characterise a building, enabling the creation of unique and complex architecture. As complexity has increased so have the associated technical, performance and architectural design challenges. To deal with this complexity it is important to approach facade design in the early stages. This dissertation explores the challenges in the early stages of design from the facade consultancy point of view. Although the project is still in the preliminary phase, initial decisions are strategic. A high degree of accuracy of analysis is required, with many project options and disciplines involved. The project is subject to a high degree of variability at this stage. The lack of a flexible and responsive approach to change leads to the repetition of onerous analysis work, impacting on the timing and cost of design. To overcome this, it is often necessary to make a selection upfront of design solutions, discarding possible paths. This leads to poorly informed design, resulting in a lack of innovation and accuracy. The optioneering process typical of the early stages of design have created an industry trend in adopting parametric modelling tools since the beginning of a design project. It is demonstrated, however, that there is currently a lack of scalable, flexible and multidisciplinary parametric tools supporting facade engineering. The aim of this dissertation is to develop a parametric tool in the Robert McNeel & Associates Grasshopper environment to compensate for these shortcomings. The tool is based on the application of a Knowledge-Based Engineering (KBE) approach, condensing the typical engineering knowledge that facade consultants usually apply at these stages of design. The tool has been developed with the support of the worldwide renowned engineering consultant WSP (www.wsp.com). The tool, called “GRETA – Grasshopper Embodied Carbon and Thermal Analysis Tool”, aims to enable flexible design, allowing the designer to perform analyses on a large number of options simultaneously, while at the same time ensuring accurate estimates. The software consists of an interface for thermal and Embodied Carbon modelling and analysis of typical facade bays. The approach developed is completely scalable: it allows the designer to free themself from the choice of commercial products in these phases, moving these choices to later stages, subject to less variability and enabling the procurement process later on. This reduces the risk of over conservative or less accurate assessments helping the design team with taking strategic decisions early on. The use of knowledge-based engineering has also enabled a dynamic interaction between the tool and the user, who is guided in their design choices. The last part of the dissertation deals with the application of GRETA to a case study of a hospital in the UK. The case study enabled the validation and calibration of the tool, as well as testing its features and capabilities, laying the basis for future developments of the tool.
Negli ultimi decenni le facciate sono diventate le parti che più caratterizzano esteticamente un edificio, permettendo la creazione di architetture uniche e complesse. Con l'aumento della complessità sono aumentate anche le sfide tecniche, prestazionali ed estetiche associate. Per affrontare questa problematica è importante approcciare la progettazione delle facciate nelle fasi iniziali. Questa tesi raccoglie le sfide degli stage preliminari della progettazione dal punto di vista della consulenza di facciate. In particolare, sebbene ci si trovi ancora in fase di concept, le decisioni iniziali ricoprono un'importanza strategica. È richiesto un elevato grado di accuratezza delle analisi, a fronte di un grande numero di opzioni progettuali e discipline coinvolte. Il progetto, in questa fase, è soggetto ad un'elevata variabilità. La mancanza di un approccio flessibile e reattivo ai cambiamenti, porta al ripetersi dell'oneroso lavoro di analisi, impattando sulle tempistiche e sui costi della progettazione. Per ovviare a ciò spesso e necessario effettuare una selezione di soluzioni progettuali, scartando possibili strade. Questo porta ad una progettazione povera che si traduce in una mancanza di innovazione e scarsa accuratezza. Il processo di optioneering tipico delle prime fasi di progetto ha creato una tendenza dell'industria ad adottare strumenti di modellazione parametrica fin dall'inizio del processo di progettazione. È dimostrato, tuttavia, che attualmente mancano strumenti parametrici scalabili, flessibili e multidisciplinari a supporto dell'ingegneria delle facciate. Lo scopo di questa tesi è di sviluppare uno strumento parametrico nell'ambiente Grasshopper della Robert McNeel & Associates per compensare queste carenze. Lo strumento si basa sull'applicazione di un approccio di Knowledge-Based Engineering (KBE), condensando le tipiche conoscenze ingegneristiche che i consulenti di facciata solitamente applicano in queste fasi della progettazione. Lo strumento è stato sviluppato con il supporto della società di consulenza ingegneristica WSP (www.wsp.com). Lo strumento, chiamato "GRETA - Grasshopper Embodied Carbon and Thermal Analysis Tool", mira a consentire una progettazione flessibile, permettendo al progettista di eseguire analisi su un gran numero di opzioni simultaneamente, garantendo allo stesso tempo stime accurate. Il software consiste in un'interfaccia per la modellazione e l'analisi termica e di Embodied Carbon di porzioni tipiche di facciata. L'approccio sviluppato è completamente scalabile: permette al progettista di sganciarsi dalla scelta dei prodotti commerciali in queste fasi, spostando queste scelte in step successivi soggetti a minore variabilità. Questo riduce il rischio di valutazioni troppo conservative o meno accurate, aiutando il team di progettazione a prendere decisioni strategiche in anticipo. L'uso del Knowledge-Based Engineering ha inoltre permesso un'interazione dinamica tra lo strumento e l'utente, il quale viene guidato nelle scelte progettuali. L'ultima parte della tesi riguarda l'applicazione di GRETA ad un caso di studio di un complesso ospedaliero nel Regno Unito. Il progetto ha permesso la validazione e la calibrazione dello strumento, così come il test delle sue caratteristiche e capacità, ponendo le basi per i prossimi sviluppi del tool.
GRETA. A grasshopper tool for embodied carbon and thermal analysis in early stages of facade design
Bortolozzo, Luca
2020/2021
Abstract
In the last few decades, facades have become the parts that most aesthetically characterise a building, enabling the creation of unique and complex architecture. As complexity has increased so have the associated technical, performance and architectural design challenges. To deal with this complexity it is important to approach facade design in the early stages. This dissertation explores the challenges in the early stages of design from the facade consultancy point of view. Although the project is still in the preliminary phase, initial decisions are strategic. A high degree of accuracy of analysis is required, with many project options and disciplines involved. The project is subject to a high degree of variability at this stage. The lack of a flexible and responsive approach to change leads to the repetition of onerous analysis work, impacting on the timing and cost of design. To overcome this, it is often necessary to make a selection upfront of design solutions, discarding possible paths. This leads to poorly informed design, resulting in a lack of innovation and accuracy. The optioneering process typical of the early stages of design have created an industry trend in adopting parametric modelling tools since the beginning of a design project. It is demonstrated, however, that there is currently a lack of scalable, flexible and multidisciplinary parametric tools supporting facade engineering. The aim of this dissertation is to develop a parametric tool in the Robert McNeel & Associates Grasshopper environment to compensate for these shortcomings. The tool is based on the application of a Knowledge-Based Engineering (KBE) approach, condensing the typical engineering knowledge that facade consultants usually apply at these stages of design. The tool has been developed with the support of the worldwide renowned engineering consultant WSP (www.wsp.com). The tool, called “GRETA – Grasshopper Embodied Carbon and Thermal Analysis Tool”, aims to enable flexible design, allowing the designer to perform analyses on a large number of options simultaneously, while at the same time ensuring accurate estimates. The software consists of an interface for thermal and Embodied Carbon modelling and analysis of typical facade bays. The approach developed is completely scalable: it allows the designer to free themself from the choice of commercial products in these phases, moving these choices to later stages, subject to less variability and enabling the procurement process later on. This reduces the risk of over conservative or less accurate assessments helping the design team with taking strategic decisions early on. The use of knowledge-based engineering has also enabled a dynamic interaction between the tool and the user, who is guided in their design choices. The last part of the dissertation deals with the application of GRETA to a case study of a hospital in the UK. The case study enabled the validation and calibration of the tool, as well as testing its features and capabilities, laying the basis for future developments of the tool.File | Dimensione | Formato | |
---|---|---|---|
2022_04_Bortolozzo.pdf
Open Access dal 30/03/2025
Dimensione
4.37 MB
Formato
Adobe PDF
|
4.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/185955