The scope within which the thesis has been developed is the one of Kinetic Monte-Carlo (KMC) models, applied to the study of the dynamics and equilibration of of the Ising model for 2D lattices. The aim is to measure and estimate the lifetimes of metastable states that form in 2D, when a bidimensional lattice starts from an initially disordered configuration and evolves towards equilibrium at a temperature below the critical temperature. In such a situation the magnetization (the Order Parameter of a Ferromagnetic system), takes on a non-zero value. The interesting aspect of studying metastable states is that they are very long lived, due to the high energy barrier separating the relative energy minimum associated to the stripe state and the absolute minimum of the system. This leads to large lifetimes of the stripe states making the transition between the two minima difficult. An example of such metastable states from ordinary experience is that of glass, which is an extremely viscous fluid at room temperature, whose equilibrium state is that of a crystalline solid. The Monte-Carlo method used in the simulations has been devised by Bortz, Kalos and Lebowitz in a 1975 paper and was implemented in the C++ language, to analyse the evolution dynamics for the 2D spin square-lattice. The advantage that the BKL method gives is the fact that time is not measured in terms of Monte-Carlo Steps per Spin (MCSS), but rather in terms of a time proportional to the physical time needed to wait for a change in the system to take place, depending on the current configuration of the system. As metastable domains that form in 2D for ferromagnetic systems take on the form of extended stripes, with a uniform magnetization, their lifetime statistics have been measured, by computing the permanence in terms of physical time of the fractal dimension, which for stripes has a value of approximately dF = 1.
Il contesto in cui la presente tesi si articola `e quello dei modelli cinetici Monte-Carlo, applicati specificamente allo studio delle propriet`a dinamiche e di equilibrazione di reticoli 2D rappresentati dal modello di Ising. Lo scopo principale `e quello di misurare i tempi di vita degli stati metastabili che si formano, quando un reticolo bidimensionale partendo da una configurazione completamente disordinata, tende all’equilibrio termodinamico sotto alla temperatura critica, dove il parametro d’ordine (che nel contesto del ferromagnetismo`e rappresentato da un campo scalare e reale), ovvero la magnetizzazione, assume un valore non nullo. L’interesse degli stati metastabili `e quello di misurarne la distribuzione statistica dei tempi di vita, in quanto pur non essendo lo stato energeticamente favorito, rappresentano comunque uno stato energetico estremamente stabile, analogamentea come un vetro, che `e un fluido con una viscosit`a estremamente elevata, tende allo stato di equilibrio che `e quello di solido cristallino. Il codice Monte-Carlo utilizzato per svolgere le simulazioni `e stato introdotto da Bortz, Kalos e Lebowitz (BKL) nel 1975 ed `e stato implementato in linguaggio C++, per analizzare la dinamica di un reticolo quadrato bidimensionale di spin. Il vantaggio del metodo BKL `e dovuto al fatto che permette di simulare la dinamica dei reticoli che evolvono con un tempo che per ogni passo della simulazione `e proporzionale al tempo fisico che il fenomeno simulato richiede per avvenire. I domini metastabili che possono formarsi in 2D sono delle striscie e la loro vita `e stata stimata misurando per quanto tempo il sistema permaneva in un intorno di una dimensione frattale dF = 1.
Fractal dimension and metastable states in out-of-equilibrium magnetic systems
Sbravati, Federico
2021/2022
Abstract
The scope within which the thesis has been developed is the one of Kinetic Monte-Carlo (KMC) models, applied to the study of the dynamics and equilibration of of the Ising model for 2D lattices. The aim is to measure and estimate the lifetimes of metastable states that form in 2D, when a bidimensional lattice starts from an initially disordered configuration and evolves towards equilibrium at a temperature below the critical temperature. In such a situation the magnetization (the Order Parameter of a Ferromagnetic system), takes on a non-zero value. The interesting aspect of studying metastable states is that they are very long lived, due to the high energy barrier separating the relative energy minimum associated to the stripe state and the absolute minimum of the system. This leads to large lifetimes of the stripe states making the transition between the two minima difficult. An example of such metastable states from ordinary experience is that of glass, which is an extremely viscous fluid at room temperature, whose equilibrium state is that of a crystalline solid. The Monte-Carlo method used in the simulations has been devised by Bortz, Kalos and Lebowitz in a 1975 paper and was implemented in the C++ language, to analyse the evolution dynamics for the 2D spin square-lattice. The advantage that the BKL method gives is the fact that time is not measured in terms of Monte-Carlo Steps per Spin (MCSS), but rather in terms of a time proportional to the physical time needed to wait for a change in the system to take place, depending on the current configuration of the system. As metastable domains that form in 2D for ferromagnetic systems take on the form of extended stripes, with a uniform magnetization, their lifetime statistics have been measured, by computing the permanence in terms of physical time of the fractal dimension, which for stripes has a value of approximately dF = 1.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Sbravati_905329.pdf
Open Access dal 22/04/2023
Descrizione: MSc Thesis Federico Sbravati (905329)
Dimensione
6.49 MB
Formato
Adobe PDF
|
6.49 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Thesis_Sbravati_905329.pdf
Open Access dal 22/04/2023
Descrizione: Executive Summary MSc Thesis Federico Sbravati (905329)
Dimensione
717.64 kB
Formato
Adobe PDF
|
717.64 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/186012