Following the discovery of graphene in 2004, there were outstanding scientific achievements in other atomically thin 2D materials as well thanks to the unique optical, electronic, and mechanical properties that appear in this regime. As an emerging subclass of 2D materials, Xenes (e.g., borophene, silicene, germanene, stanene, phosphorene, arsenene, antimonene, and bismuthene) are made of a single element like graphene and have opened the door for various important applications beyond graphene. In this framework, this thesis work reports the synthesis of silicene, stanene, and mixture of them in a heterostructured stack on Ag (111) substrate by scrutinizing the details of every single growth as a function of the relevant process parameter. The characterization of the synthesized materials was performed in-situ to study the morphological and structural properties, through Low Energy Electron Diffraction (LEED), to study surface chemical composition through Auger Electron Spectroscopy (AES), and ex-situ to analyze the vibrational properties, through Raman spectroscopy. Finally, this work also presents preliminary results concerning the transfer of encapsulated silicene layer from the native substrate to a secondary one and the Optical Lithography patterning of the transferred silicene samples.

Dopo la scoperta del grafene nel 2004, si sono susseguiti notevoli avanzamenti sul fronte di altri materiali 2d atomicamente sottili basati sull’unicità delle proprietà ottiche, elettroniche e meccaniche che hanno luogo in quel regime. In qualità di sotto-categoria emergente fra i materiali 2D, gli Xeni (es. borne, silicene, stanene, fosforite, arsemene, antimonene e bismutene) sono costituiti da un singolo elemento come il grafene e hanno espanso il numero di possibili applicazioni oltre a quelle permesse dal grafene. In questo contesto, il presente lavoro di tesi riporta la sintesi di silicene, stanne, e un loro combinato in una eterostruttura su substrato di Ag(111) analizzando nel dettaglio le crescite dei materiali in funzione dei parametri di processo. La caratterizzazione dei materiali sintetizzati è stata svolta per mezzo dello studio in situ delle proprietà morfologico-strutturali tramite diffrazione da elettronica a bassa energia (LEED) e delle proprietà chimico-composizionali tramite spettroscopia Auger (AES), attraverso lo studio ex situ delle proprietà vibrazioni tramite spettroscopia Raman. Infine, questo lavoro presenta risultati preliminari sul trasferimento di silicene incapsulato dal substrato nativo ad un substrato secondario e della scrittura dei campioni di silicene trasferito tramite litografia ottica.

Growth, characterization, and processing of epitaxial Xenes

Gharedaghi, Sepideh
2020/2021

Abstract

Following the discovery of graphene in 2004, there were outstanding scientific achievements in other atomically thin 2D materials as well thanks to the unique optical, electronic, and mechanical properties that appear in this regime. As an emerging subclass of 2D materials, Xenes (e.g., borophene, silicene, germanene, stanene, phosphorene, arsenene, antimonene, and bismuthene) are made of a single element like graphene and have opened the door for various important applications beyond graphene. In this framework, this thesis work reports the synthesis of silicene, stanene, and mixture of them in a heterostructured stack on Ag (111) substrate by scrutinizing the details of every single growth as a function of the relevant process parameter. The characterization of the synthesized materials was performed in-situ to study the morphological and structural properties, through Low Energy Electron Diffraction (LEED), to study surface chemical composition through Auger Electron Spectroscopy (AES), and ex-situ to analyze the vibrational properties, through Raman spectroscopy. Finally, this work also presents preliminary results concerning the transfer of encapsulated silicene layer from the native substrate to a secondary one and the Optical Lithography patterning of the transferred silicene samples.
MOLLE, ALESSANDRO
MARTELLA, CHRISTIAN
DHUNGANA, DAVA SAGAR
ING - Scuola di Ingegneria Industriale e dell'Informazione
28-apr-2022
2020/2021
Dopo la scoperta del grafene nel 2004, si sono susseguiti notevoli avanzamenti sul fronte di altri materiali 2d atomicamente sottili basati sull’unicità delle proprietà ottiche, elettroniche e meccaniche che hanno luogo in quel regime. In qualità di sotto-categoria emergente fra i materiali 2D, gli Xeni (es. borne, silicene, stanene, fosforite, arsemene, antimonene e bismutene) sono costituiti da un singolo elemento come il grafene e hanno espanso il numero di possibili applicazioni oltre a quelle permesse dal grafene. In questo contesto, il presente lavoro di tesi riporta la sintesi di silicene, stanne, e un loro combinato in una eterostruttura su substrato di Ag(111) analizzando nel dettaglio le crescite dei materiali in funzione dei parametri di processo. La caratterizzazione dei materiali sintetizzati è stata svolta per mezzo dello studio in situ delle proprietà morfologico-strutturali tramite diffrazione da elettronica a bassa energia (LEED) e delle proprietà chimico-composizionali tramite spettroscopia Auger (AES), attraverso lo studio ex situ delle proprietà vibrazioni tramite spettroscopia Raman. Infine, questo lavoro presenta risultati preliminari sul trasferimento di silicene incapsulato dal substrato nativo ad un substrato secondario e della scrittura dei campioni di silicene trasferito tramite litografia ottica.
File allegati
File Dimensione Formato  
Mster's thesis.pdf

solo utenti autorizzati dal 22/04/2023

Descrizione: Thesis
Dimensione 22.02 MB
Formato Adobe PDF
22.02 MB Adobe PDF   Visualizza/Apri
Executive_Summary.pdf

solo utenti autorizzati dal 22/04/2023

Descrizione: Executive summary
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/186031