Breast cancer is a highly heterogeneous disease, and 3D models that mimic the breast cancer microenvironment in vitro are an important tool to understand the mechanism of cancer development and cellular response to different drugs and treatments. Among different 3D models (e.g. microfluidic devices, spheroids and scaffolds), hydrogels made of natural polymers have been selected in this thesis because they are biologically active and their chemical and mechanical properties can be tailored to correctly mimic those of ECM in vivo. Gelatin and chitosan have been chosen to realize hydrogels with different concentration of polymer and crosslinking agent (i.e. glutaraldehyde), obtained by freeze-drying or dehydration, to mimic both healthy and tumoral adipose tissue. Swelling and mechanical properties were investigated for all types of hydrogels realized. In vitro biological tests (i.e. indirect cytotoxicity, direct cytocompatibility and adipocyte differentiation) were performed on hydrogels that showed the best properties to mimic adipose tissue. Selected hydrogels did not release cytotoxic compounds when immersed in culture medium, and cells (i.e. preadipocytes) seeded on hydrogels proliferated and differentiated into adipocytes. This thesis, therefore, validated these hydrogels as promising 3D models to study breast cancer.

Il carcinoma mammario è una patologia molto eterogenea, e modelli 3D che mimano il microambiente tumorale in vitro sono un importante strumento per comprendere i meccanismi alla base dello sviluppo del cancro e la risposta cellulare a diversi farmaci e trattamenti. Tra i diversi modelli 3D (es. modelli microfluidici, sferoidi, scaffold), in questa tesi sono stati selezionati gli idrogeli realizzati con materiali naturali, poiché biologicamente attivi e le loro proprietà chimiche e meccaniche possono essere modificare in modo da mimare correttamente quelle della ECM in vivo. Sono stati scelti gelatina e chitosano per realizzare idrogeli con diverse concentrazioni di polimero e reticolante (glutaraldeide), ottenuti tramite liofilizzazione o disidratazione, per mimare il tessuto adiposo sia sano che tumorale. Le proprietà di swelling e meccaniche sono state studiate per tutti i tipi di idrogeli realizzati. Le prove biologiche in vitro (citotossicità indiretta, citocompatibilità diretta e differenziamento adipogenico) sono state condotte sugli idrogeli che hanno mostrato le migliori proprietà per mimare il tessuto adiposo. Gli idrogeli selezionati non hanno rilasciato prodotti citotossici quando immersi nel mezzo di coltura e le cellule (preadipociti) seminate sugli idrogeli sono state in grado di proliferare e differenziare in adipociti. Questa tesi, quindi, valida questi idrogeli come promettenti modelli 3D per lo studio del carcinoma mammario.

Idrogeli di gelatina/chitosano per la realizzazione di modelli 3D scaffold-based di tessuto adiposo

Temporelli, Elena
2020/2021

Abstract

Breast cancer is a highly heterogeneous disease, and 3D models that mimic the breast cancer microenvironment in vitro are an important tool to understand the mechanism of cancer development and cellular response to different drugs and treatments. Among different 3D models (e.g. microfluidic devices, spheroids and scaffolds), hydrogels made of natural polymers have been selected in this thesis because they are biologically active and their chemical and mechanical properties can be tailored to correctly mimic those of ECM in vivo. Gelatin and chitosan have been chosen to realize hydrogels with different concentration of polymer and crosslinking agent (i.e. glutaraldehyde), obtained by freeze-drying or dehydration, to mimic both healthy and tumoral adipose tissue. Swelling and mechanical properties were investigated for all types of hydrogels realized. In vitro biological tests (i.e. indirect cytotoxicity, direct cytocompatibility and adipocyte differentiation) were performed on hydrogels that showed the best properties to mimic adipose tissue. Selected hydrogels did not release cytotoxic compounds when immersed in culture medium, and cells (i.e. preadipocytes) seeded on hydrogels proliferated and differentiated into adipocytes. This thesis, therefore, validated these hydrogels as promising 3D models to study breast cancer.
PITTON, MATTEO
ING - Scuola di Ingegneria Industriale e dell'Informazione
28-apr-2022
2020/2021
Il carcinoma mammario è una patologia molto eterogenea, e modelli 3D che mimano il microambiente tumorale in vitro sono un importante strumento per comprendere i meccanismi alla base dello sviluppo del cancro e la risposta cellulare a diversi farmaci e trattamenti. Tra i diversi modelli 3D (es. modelli microfluidici, sferoidi, scaffold), in questa tesi sono stati selezionati gli idrogeli realizzati con materiali naturali, poiché biologicamente attivi e le loro proprietà chimiche e meccaniche possono essere modificare in modo da mimare correttamente quelle della ECM in vivo. Sono stati scelti gelatina e chitosano per realizzare idrogeli con diverse concentrazioni di polimero e reticolante (glutaraldeide), ottenuti tramite liofilizzazione o disidratazione, per mimare il tessuto adiposo sia sano che tumorale. Le proprietà di swelling e meccaniche sono state studiate per tutti i tipi di idrogeli realizzati. Le prove biologiche in vitro (citotossicità indiretta, citocompatibilità diretta e differenziamento adipogenico) sono state condotte sugli idrogeli che hanno mostrato le migliori proprietà per mimare il tessuto adiposo. Gli idrogeli selezionati non hanno rilasciato prodotti citotossici quando immersi nel mezzo di coltura e le cellule (preadipociti) seminate sugli idrogeli sono state in grado di proliferare e differenziare in adipociti. Questa tesi, quindi, valida questi idrogeli come promettenti modelli 3D per lo studio del carcinoma mammario.
File allegati
File Dimensione Formato  
2022_04_Temporelli_01.pdf

non accessibile

Descrizione: Executive summary
Dimensione 932.33 kB
Formato Adobe PDF
932.33 kB Adobe PDF   Visualizza/Apri
2022_04_Temporelli_02.pdf

non accessibile

Descrizione: Tesi
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/186119