In the upcoming years, the optimization and intensification of chemical processes will be more and more crucial to meet the target posed by the Sustainable Development Goals. Catalytic systems are at the very heart of these efforts since they can improve reactor conversion and selectivity and reduce material and energy consumptions. Many industrial processes of key importance work under multiphase conditions (i.e. more than one immiscible fluid in contact with the catalyst). It is imperative to improve the fundamental understanding of physical and chemical behaviour of such systems to enable chemical engineers to design intensified solutions and new technologies. Multiscale modelling is widely acknowledged to be a promising route to achieve fundamental insights into the reactor and process behaviour. In this respect, the adoption of the first-principles approach at each scale is pivotal to achieve the required level of detail and insights into the system. In particular, Computational Fluid Dynamics (CFD) can describe the position of the phases, the complex flow field and the transport phenomena while detailed microkinetic modelling provides an unparalleled power in the description surface reactivity. The aim of this work is to extend an already developed numerical framework, named catalyticInterFoam, to provide a comprehensive and accurate description of multiphase reactive flows with intra- and inter-phase mass transfer and heat transfer with detailed description of surface reactivity. The framework employs a Volume of Fluid (VOF) method for the tracking of the phases interface. The species transport is described through the Compressive-Continuous Species Transfer model. The mass balances are solved by considering an operator splitting approach, enabling to separately treat advection and diffusion terms resulting in accurate description of the phase transfer. The detailed heterogeneous chemistry is introduced as a mass and energy flux on the catalyst surface by dedicated boundary conditions. The hereby presented numerical framework has been assessed in simple geometries by direct comparison with analytical and fully coupled solutions. The simulations revealed an excellent agreement in different operating conditions and system configurations proving the capability of the framework in accurately describing multiphase flows with mass and energy transfer and detailed description of the surface chemistry. Finally, the solver has been employed in the analysis of falling film on catalytic particles representing the first step to the investigation of trickled bed reactors. As a whole, the resulting numerical framework allows for a fully first-principles-based approach to catalytic chemical reaction engineering of multiphase systems, providing an accurate description of the physical and chemical phenomena upon all the scales, paving the way for the detailed multiscale simulation of heterogeneous catalytic systems.
Negli anni a venire, l’ottimizzazione e l’intensificazione di processi dell’industria chimica sarà sempre più cruciale per raggiungere i propositi posti dai Sustainable Development Goals. I sistemi catalitici sono al centro di questi sforzi in quanto possono migliorare conversione e selettività riducendo consumi materiali ed energetici. Molti di questi lavorano in condizioni multifase (i.e., più di un fluido immiscibile in contatto con il catalizzatore) e sono di fondamentale importanza per molti processi industriali. È, quindi, fondamentale migliorare la comprensione del comportamento fisico e chimico per permettere la progettazione di soluzioni intensificate e nuove tecnologie. La modellazione multiscala è largamente riconosciuta come una via promettente per ottenere il necessario grado di comprensione del comportamento dei processi. A questo proposito, l’adozione di un approccio dei primi principi è fondamentale per raggiungere il livello di dettaglio necessario. In particolare, la Fluidodinamica Computazionale può descrivere the posizione delle fasi, il complesso campo di moto e i fenomeni di trasporto mentre la dettagliata descrizione microcinetica fornisce una capacità senza precedenti nel descrivere la reattività superficiale. Lo scopo di questo lavoro è di estendere un algoritmo numerico già esistente, chiamato catalyticInterFoam, per ottenere una descrizione completa e accurata dei flussi reattivi multifase con trasporto di materia ed energia intra- e inter-fase e con descrizione dettagliata della reattività superficiale. L’algoritmo impiega il metodo Volume of Fluid (VOF) per tracciare l’interfaccia tra le fasi. Il trasporto delle specie è descritto tramite il modello Compressive-Continuous Species Transfer. I bilanci di massa sono risolti grazie a un approccio operator-splitting che permette di trattare separatamente i termini convettivi e diffusivi risultando in una descrizione accurata del trasporto di materia tra le fasi. La chimica eterogenea è introdotta come un flusso di massa ed energia sulla superficie del catalizzatore grazie a una condizione al contorno specificamente sviluppata. L’algoritmo numerico sviluppato in questo lavoro è stato valutato in geometrie semplici tramite una comparazione diretta con soluzioni analitiche e numeriche ottenute mediante metodi completamente accoppiati. Le simulazioni hanno rivelato un accordo eccellente in diverse condizioni operative e sistemi differenti provando la capacità dell’algoritmo nel descrivere accuratamente flussi multifase con trasporto di massa ed energia e con descrizione dettagliata della chimica superficiale. Infine, il risolutore è stato impiegato per l’analisi di un film di liquido su una sfera catalitica che rappresenta il primo passo verso l’investigazione di reattori trickle-bed. Nel complesso, il framework numerico permette un approccio basato sui principi primi ai sistemi multifase con chimica eterogenea, fornendo una descrizione accurata dei fenomeni fisici e chimici in tutte le scale, aprendo la strada verso la simulazione multiscala dettagliata di sistemi catalitici eterogenei.
Coupling computational fluid dynamics of gas-liquid flow in catalytic reactors with microkinetic description of surface chemistry
Milanesi, Stefano
2020/2021
Abstract
In the upcoming years, the optimization and intensification of chemical processes will be more and more crucial to meet the target posed by the Sustainable Development Goals. Catalytic systems are at the very heart of these efforts since they can improve reactor conversion and selectivity and reduce material and energy consumptions. Many industrial processes of key importance work under multiphase conditions (i.e. more than one immiscible fluid in contact with the catalyst). It is imperative to improve the fundamental understanding of physical and chemical behaviour of such systems to enable chemical engineers to design intensified solutions and new technologies. Multiscale modelling is widely acknowledged to be a promising route to achieve fundamental insights into the reactor and process behaviour. In this respect, the adoption of the first-principles approach at each scale is pivotal to achieve the required level of detail and insights into the system. In particular, Computational Fluid Dynamics (CFD) can describe the position of the phases, the complex flow field and the transport phenomena while detailed microkinetic modelling provides an unparalleled power in the description surface reactivity. The aim of this work is to extend an already developed numerical framework, named catalyticInterFoam, to provide a comprehensive and accurate description of multiphase reactive flows with intra- and inter-phase mass transfer and heat transfer with detailed description of surface reactivity. The framework employs a Volume of Fluid (VOF) method for the tracking of the phases interface. The species transport is described through the Compressive-Continuous Species Transfer model. The mass balances are solved by considering an operator splitting approach, enabling to separately treat advection and diffusion terms resulting in accurate description of the phase transfer. The detailed heterogeneous chemistry is introduced as a mass and energy flux on the catalyst surface by dedicated boundary conditions. The hereby presented numerical framework has been assessed in simple geometries by direct comparison with analytical and fully coupled solutions. The simulations revealed an excellent agreement in different operating conditions and system configurations proving the capability of the framework in accurately describing multiphase flows with mass and energy transfer and detailed description of the surface chemistry. Finally, the solver has been employed in the analysis of falling film on catalytic particles representing the first step to the investigation of trickled bed reactors. As a whole, the resulting numerical framework allows for a fully first-principles-based approach to catalytic chemical reaction engineering of multiphase systems, providing an accurate description of the physical and chemical phenomena upon all the scales, paving the way for the detailed multiscale simulation of heterogeneous catalytic systems.File | Dimensione | Formato | |
---|---|---|---|
2022_04_Milanesi.pdf
non accessibile
Dimensione
5.1 MB
Formato
Adobe PDF
|
5.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/186342