A plume is a free-shear flow arising from a localized source of buoyancy. These flows are omnipresent on a wide range of scales in both natural and industrial applications. These include, for example, hot gas releases rising above industrial stacks, volcanic eruption columns or smoke produced by fires in free or enclosed spaces. So far, most studies on buoyant plumes concerned the case of releases with slight density differences with respect to ambient air, usually referred to as Boussinesq plumes. Few studies were instead devoted to the case of large density differences, i.e. non-Boussinesq plumes. These latter are the object of the present work. The aim is that of characterizing the dynamics of these releases by means of experimental techniques, with a focus on the turbulent processes that are responsible for the entrainment of ambient air within the plume. The experimental campaign has been performed in the "Laboratoire de Mécanique des Fluides et d’Acoustique" at "École Centrale de Lyon" and consists of 2D-PIV measurements on the velocity fields of helium plumes with three different Reynolds numbers at the source. After a qualitative plumes description based on flow visualizations, we analyse the details of the flow, in terms of first and second order statistics. The goal of this analysis is to figure out the influence of the Reynolds number as well as of the density difference on the velocity statistics and on the transition toward a self-similar behaviour. The second part of the study consists in a flow description relying on integral quantities, notably those needed to quantify the intensity of the entrainment process. This latter is characterized, as customary, by means of an entrainment coefficient, which we estimated using two different approaches. One is based on the conservation of mass and a second involves also considerations about the balance of mean kinetic energy. In performing this analysis, our experimental results are systematically compared to the outcomes of a Large eddy simulation.
I pennacchi sono dei flussi liberi che nascono quando un fluido più leggero del fluido ambiente è rilasciato da una sorgente. Esistono diversi flussi naturali e artificiali di questo tipo e con diverse scale di grandezza come, ad esempio, le colonne di gas caldo rilasciate da grandi camini industriali, i pennacchi di cenere che nascono da eruzioni vulcaniche o la propagazione di fumi prodotti da incendi in spazi aperti o chiusi. In letteratura, la maggior parte degli studi è stata condotta su pennacchi che sono di poco più leggeri dell’ambiente in cui sono rilasciati e che possono essere analizzati con l’approsimazione di Boussinesq. In questa tesi viene invece presentata un’analisi sperimentale di un pennacchio di elio molto più leggero dell’aria. La campagna sperimentale è stata condotta interamente nel "Laboratoire de Mécanique des Fluides et d’Acoustique" all’ École Centrale di Lione e consiste in misurazioni del campo di velocità tramite la tecnica PIV, eseguita su 3 pennacchi con numeri di Reynolds diversi alla sorgente. Dopo una descrizione qualitativa del flusso basata sulle visualizzazioni, vengono presentati i profili radiali delle grandezze statistiche del primo e del secondo ordine legate al campo di velocità. L’obiettivo di questa analisi è capire come il numero di Reynolds e la differenza di densità influiscono sui profili statistici e sulla transizione verso un comportamento auto-simile. La seconda parte dello studio consiste in una descrizione del flusso basata su grandezze integrali. L’obiettivo finale è la stima del coefficiente di entrainment. Questo coefficiente evidenzia la miscelazione del fluido del pennacchio con il fluido dell’ambiente e viene calcolato in due modi: il primo è derivato dalla conservazione della massa, il secondo si basa su considerazioni fatte sul bilancio di energia cinetica media. Infine, i risultati sperimentali sono confrontati con risultati numerici ottenuti da una simulazione LES.
Dynamics and entrainment of an helium plume
Lanzini, Stefano
2021/2022
Abstract
A plume is a free-shear flow arising from a localized source of buoyancy. These flows are omnipresent on a wide range of scales in both natural and industrial applications. These include, for example, hot gas releases rising above industrial stacks, volcanic eruption columns or smoke produced by fires in free or enclosed spaces. So far, most studies on buoyant plumes concerned the case of releases with slight density differences with respect to ambient air, usually referred to as Boussinesq plumes. Few studies were instead devoted to the case of large density differences, i.e. non-Boussinesq plumes. These latter are the object of the present work. The aim is that of characterizing the dynamics of these releases by means of experimental techniques, with a focus on the turbulent processes that are responsible for the entrainment of ambient air within the plume. The experimental campaign has been performed in the "Laboratoire de Mécanique des Fluides et d’Acoustique" at "École Centrale de Lyon" and consists of 2D-PIV measurements on the velocity fields of helium plumes with three different Reynolds numbers at the source. After a qualitative plumes description based on flow visualizations, we analyse the details of the flow, in terms of first and second order statistics. The goal of this analysis is to figure out the influence of the Reynolds number as well as of the density difference on the velocity statistics and on the transition toward a self-similar behaviour. The second part of the study consists in a flow description relying on integral quantities, notably those needed to quantify the intensity of the entrainment process. This latter is characterized, as customary, by means of an entrainment coefficient, which we estimated using two different approaches. One is based on the conservation of mass and a second involves also considerations about the balance of mean kinetic energy. In performing this analysis, our experimental results are systematically compared to the outcomes of a Large eddy simulation.File | Dimensione | Formato | |
---|---|---|---|
2022_04_Lanzini.pdf
Open Access dal 10/04/2023
Descrizione: testo tesi
Dimensione
10.07 MB
Formato
Adobe PDF
|
10.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/186357