Self-pressurization is an innovative and promising technology for in-space propulsion, enabling to avoid the classical pressurizing tank or more complex turbo-pump systems. This allows to reduce the volume and cost of propulsion systems. The authors developed the thesis work in the context of D-Orbit company as part of a master thesis program in propulsion engineering. After a detailed literature review of the existing self-pressurization models, the mass flow models both for single-phase and two-phase fluid behavior were studied. Afterward, a deepen characterization of Nitrous Oxide, the fluid of interest for this thesis, was performed. In addition, the work presents a brief focus on the state of the art of real fluid equation of state for the prediction of N2O behavior. Subsequently, the authors proposed two new mass flow models. They are direct modifications of the Dyer model, the most used model for Nitrous Oxide applications, and account for compressibility and choked conditions. Thereafter, the work focuses on the development of a new self-pressurization 0D non-equilibrium model, which consists in a blend of Casalino & Pastrone and Zilliac & Karabeyoglu models. The objective of the model is to predict the experimental pressure trace by trying to minimize the impact of empirical parameters present in previous models. Also, the thesis work presents the experimental campaign performed by the authors in which both filling and draining tests were carried out. During the campaign both liquid and vapor phases were discharged, the latter is particularly of interest due to the lack of available data in literature. Then the data retrieved by the experimental campaign, with other data set available in literature, were used to validate the developed 0D model which shows an error lower than 5 %. In addition, the thesis presents a new in-orbit refueling concept developed by the authors. Finally, a new filling model based on the 0D model presented in this thesis work was developed and validated.
L'autopressurizzazione è una tecnologia innovativa per la propulsione spaziale, che permette di eliminare i tipici sistemi di pressurizzazione o più complessi sistemi turbopompa. Questo permette di ridurre di ridurre l'ingombro ed il costo dei sistemi propulsivi . Il lavoro è stato sviluppato all'interno di un programma di tesi magistrale in propulsione spaziale in collaborazione con l'azienda D-Orbit. La tesi propone una revisione dei modelli di autopressurizzazione presenti in letteratura. Inoltre, è stata proposta un'analisi sui principali modelli di portata disponibili, sia in singola fase che bifase. In aggiunta, è stata presentata una caratterizzazione del protossido di azoto, il fluido di interesse, con un breve focus sulle equazioni di stato per la descrizione del comportamento reale del fluido. Dopo di che, sono stati proposti due ulteriori modelli di porta. Essi sono una modifica del modello di Dyer e tengono conto della comprimibilità e delle condizioni critiche. Successivamente, è stato proposto un nuovo modello di autopressurizzazione 0D in condizioni di non equilibrio il quale consiste nel combinare i modelli di Zilliac & Karabeyoglu e di Casalino & Pastrone. L'obbiettivo del modello è quello di predire con la massima accuratezza la traccia di pressione sperimentale, andando a ridurre l'impatto di eventuali termini empirici presenti nei precedenti modelli. Inoltre, la tesi descrive la campagna sperimentale eseguita dagli autori all'interno della quale sono stati realizzati sia test di rifornimento che di scarico, sia per la fase liquida che per la fase vapore. Quest'ultima di particolare interesse a causa della carenza di dati sperimentali disponibili in letteratura. In seguito, mediante i dati raccolti, e con altri disponibili in letteratura, è stato validato il modello di autopressurizzazione proposto dagli autori il quale presenta un' errore minore del 5 %. In aggiunta, la tesi mostra il sistema di rifornimento in orbita proposto dagli autori. Infine, è stato sviluppato e validato un modello di rifornimento basato sullo schema 0D di non equilibrio proposto in precedenza.
Modeling and on-ground testing of self-pressurized liquid propellant behavior for in-orbit refueling
Foletti, Nicola;Magni, Luca
2020/2021
Abstract
Self-pressurization is an innovative and promising technology for in-space propulsion, enabling to avoid the classical pressurizing tank or more complex turbo-pump systems. This allows to reduce the volume and cost of propulsion systems. The authors developed the thesis work in the context of D-Orbit company as part of a master thesis program in propulsion engineering. After a detailed literature review of the existing self-pressurization models, the mass flow models both for single-phase and two-phase fluid behavior were studied. Afterward, a deepen characterization of Nitrous Oxide, the fluid of interest for this thesis, was performed. In addition, the work presents a brief focus on the state of the art of real fluid equation of state for the prediction of N2O behavior. Subsequently, the authors proposed two new mass flow models. They are direct modifications of the Dyer model, the most used model for Nitrous Oxide applications, and account for compressibility and choked conditions. Thereafter, the work focuses on the development of a new self-pressurization 0D non-equilibrium model, which consists in a blend of Casalino & Pastrone and Zilliac & Karabeyoglu models. The objective of the model is to predict the experimental pressure trace by trying to minimize the impact of empirical parameters present in previous models. Also, the thesis work presents the experimental campaign performed by the authors in which both filling and draining tests were carried out. During the campaign both liquid and vapor phases were discharged, the latter is particularly of interest due to the lack of available data in literature. Then the data retrieved by the experimental campaign, with other data set available in literature, were used to validate the developed 0D model which shows an error lower than 5 %. In addition, the thesis presents a new in-orbit refueling concept developed by the authors. Finally, a new filling model based on the 0D model presented in this thesis work was developed and validated.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary__Foletti_Magni.pdf
non accessibile
Descrizione: Excetuvi Summary della tesi
Dimensione
603.69 kB
Formato
Adobe PDF
|
603.69 kB | Adobe PDF | Visualizza/Apri |
2022_04_Foletti_Magni.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
37.13 MB
Formato
Adobe PDF
|
37.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/186794