In the field of Structural Heart Diseases, Mitral Regurgitation’s incidence is rising because of an aging population worldwide, and it has reached an annual mortality rate near 34%. The procedures of Structural Intervention Cardiology have enlarged the number of treated patients suffering from Mitral Regurgitation, since their minimally invasive and transcatheter approach. However, there are some problems mainly related to the lack of optimal and non-invasive visual feedback, exposition to X-ray radiation and the absence of autonomous surgical equipment that can collaborate with the surgeon, improving the results of the Mitral Valve Repair surgical procedure. To overcome these drawbacks, the European Artery project aspires to provide a step-change in the minimally invasive transcatheter procedure improving the use of the commercially available MitraClip system®. This system is handled manually and it is exploited to deliver a clip to grasp the damaged mitral valve’s leaflets. The aim of this thesis is to propose an innovative robotassisted method with autonomous control for the aforementioned system. The presented methodology is constituted of two phases: the first one tries to design in the Solidworks® environment and 3D print the mechanical elements of the support. Furthermore, the electromagnetic sensors are embedded in the catheter’s structure to track safely the position of the clip and the integration with electrical motors and micro-controller devoted to catheter’s steering is performed. The second is the development of the algorithm to control the tendons’ displacements with a closed-loop position correction, to improve the accuracy in the autonomous clip’s positioning. The described approach was tested in two sessions to demonstrate its feasibility and dexterity: at first, an accuracy of 1.6±0.54 mm in reaching different targets was obtained. Then, the ability to follow a manual trajectory was studied and the results seem promising and coherent with the literature ones. Indeed, the overall study shows that the robotic system is able to reach autonomously the target accurately and with an execution time comparable to manual use. An abstract and a paper related to this work have been submitted to CRAS2022 and to IROS2022, respectively.
Nel campo delle malattie cardiovascolari, il Rigurgito Mitralico ha raggiunto un tasso di mortalità annuale del 34%, a causa dell’invecchiamento della popolazione. Le procedure di Cardiologia Interventistica Strutturata, eseguite con approccio percutaneo e mini invasivo, hanno ampliato il numero di pazienti trattati affetti da questa patologia. Esistono, comunque, alcune problematiche legate alla mancanza di un feedback visivo non invasivo, all’esposizione ai Raggi X e all’assenza di apparecchiature autonome che possano coadiuvare il chirurgo nella procedura di riparazione della valvola mitrale. Per superare questi limiti, il progetto Europeo Artery aspira a fornire un cambiamento radicale nell’approccio transcateterico migliorando l’utilizzo del sistema manuale MitraClip®, utilizzato per la chiusura, mediante clip, dei lembi della valvola mitrale danneggiata. Lo scopo di qusta tesi è quello di proporre un supporto robotizzato unito ad un controllo autonomo per il sistema sopra citato. La metodologia presentata è costituita da due fasi: nella prima, viene progettato, nell’ambiente Solidworks®, e stampato in 3D il nuovo supporto meccanico che viene opportunatamente connesso al sistema MitraClip. Inoltre, sono stati connessi i motori elettrici e il microcontrollore dedicati alla mobilità della clip e dei sensori elettromagnetici sono stati incorporati per tracciarne la posizione. La seconda riguarda lo sviluppo dell’algoritmo per controllare la quantità di cavo che deve essere gestita, a cui viene aggiunto un controllo in posizione ad anello chiuso, per migliorare il posizionamento autonomo della clip. Il nuovo sistema robotizzato è stato testato per dimostrarne la qualità delle prestazioni: in primo luogo, è stata ottenuta una precisione di 1,6±0,54 mm nel raggiungere diversi target operatori. In secondo luogo, sono stati ottenuti risultati promettenti e coerenti con quelli della letteratura nella capacità di seguire una traiettoria ideale. Lo studio complessivo mostra che il sistema robotico è in grado di posizionarsi accuratamente e autonomamente, con un tempo di esecuzione paragonabile all’uso manuale. Infine, un abstract e un articolo, che presentano un primo prototipo di dispositivo robotizzato e autonomo, sono stati sottomessi alle conferenze CRAS2022 e IROS2022.
Robotic actuation and autonomous control of a tendon-driven catheter for structural intervention cardiology
Magro, Mattia
2020/2021
Abstract
In the field of Structural Heart Diseases, Mitral Regurgitation’s incidence is rising because of an aging population worldwide, and it has reached an annual mortality rate near 34%. The procedures of Structural Intervention Cardiology have enlarged the number of treated patients suffering from Mitral Regurgitation, since their minimally invasive and transcatheter approach. However, there are some problems mainly related to the lack of optimal and non-invasive visual feedback, exposition to X-ray radiation and the absence of autonomous surgical equipment that can collaborate with the surgeon, improving the results of the Mitral Valve Repair surgical procedure. To overcome these drawbacks, the European Artery project aspires to provide a step-change in the minimally invasive transcatheter procedure improving the use of the commercially available MitraClip system®. This system is handled manually and it is exploited to deliver a clip to grasp the damaged mitral valve’s leaflets. The aim of this thesis is to propose an innovative robotassisted method with autonomous control for the aforementioned system. The presented methodology is constituted of two phases: the first one tries to design in the Solidworks® environment and 3D print the mechanical elements of the support. Furthermore, the electromagnetic sensors are embedded in the catheter’s structure to track safely the position of the clip and the integration with electrical motors and micro-controller devoted to catheter’s steering is performed. The second is the development of the algorithm to control the tendons’ displacements with a closed-loop position correction, to improve the accuracy in the autonomous clip’s positioning. The described approach was tested in two sessions to demonstrate its feasibility and dexterity: at first, an accuracy of 1.6±0.54 mm in reaching different targets was obtained. Then, the ability to follow a manual trajectory was studied and the results seem promising and coherent with the literature ones. Indeed, the overall study shows that the robotic system is able to reach autonomously the target accurately and with an execution time comparable to manual use. An abstract and a paper related to this work have been submitted to CRAS2022 and to IROS2022, respectively.File | Dimensione | Formato | |
---|---|---|---|
Summary_Thesis_Magro_Mattia_940330.pdf
solo utenti autorizzati dal 08/04/2023
Descrizione: Executive summary and Thesis
Dimensione
45.86 MB
Formato
Adobe PDF
|
45.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/186849