During the past two years, SARS-CoV-2 pandemic has been hitting countries worldwide with a catastrophic impact on healthcare systems. The disruption of healthcare services caused severe lack of resources such as medical devices, including life support systems, and adequate facilities for the treatment of patients. The MEV (Multiple Emergency Ventilator) project took shape in March 2020 with the purpose of making up for the critical lack of mechanical ventilation systems and was recognised in December 2020 by Politecnico di Milano within the Polisocial Programme, with the name of MakingMEV. Its concept is that of a multiple emergency ventilation system able to feed up to 10 intubated patients with a constant driving pressure, through a single distribution line and medical oxygen source. The present thesis work aims at developing and validating an experimental setup for the testing of this ventilation system. To do so, a single-patient configuration was assessed as a significant and representative choice, in view of a future up-scaling of the experimental work embracing the entire system. Most of this thesis work was therefore focused on the design, manufacturing and testing of a key element to the mentioned configuration: the model lung. The latter is meant to model lungs biomechanics in both physiological and pathological conditions, in the form of a mechano-pneumatic combination of resistance and compliance. The results of the single-patient configuration tests showed optimal outcomes in terms of pressure, flow and volume patterns in case a positive end-expiratory pressure (PEEP) was set, while with zero end-expiratory pressure (ZEEP) there are still some limits to be overcome. Though, the overall result was satisfactory as the combination and interplay of elements, together with the acquisition of the variables of interest were successfully tested in several conditions. In addition, the distribution pipeline was separately tested in order to evaluate its impact on head losses, since maintaining a constant pressure up to each patient derivation is the core principle of MEV. Results were successful for both pipelines with 40 mm and 50 mm inner diameter, as far as nominal working conditions were respected. Yet, the former alternative needs to be more carefully weighed in case of extreme working conditions (high flows). In view of all this, it is legitimate to state that requirements were met for a short-term up-scaling of experimental activity.
Negli ultimi due anni, la pandemia da SARS-CoV-2 ha colpito tutti i paesi del globo con un impatto catastrofico sui sistemi sanitari nazionali. La compromissione di tali sistemi e dei loro servizi ha in molti casi portato ad una grave scarsità di risorse e dispositivi medici, inclusi sistemi di supporto alla vita, e adeguate strutture per il trattamento dei pazienti. Il progetto MEV (Multiple Emergency Ventilator) nasce a marzo 2020 con l’idea di far fronte alla mancanza di sistemi di ventilazione meccanica e viene riconosciuto nel dicembre dello stesso anno dal Politecnico di Milano con un supporto nell’ambito del programma Polisocial, con il nome di MakingMEV. L’idea fondante è lo sviluppo di un sistema di ventilazione multiplo di emergenza, capace di alimentare a pressione costante fino a 10 pazienti intubati, sfruttando una singola linea di distribuzione e una comune sorgente di ossigeno. Il presente lavoro di tesi si propone di sviluppare e validare un setup sperimentale per testare tale sistema di ventilazione. A questo proposito, si è valutato che una configurazione a singolo paziente potesse essere una scelta significativa e rappresentativa in vista di una successiva replicazione delle condizioni sperimentali sull’intero sistema. Ampia parte del lavoro si è focalizzata sulla progettazione, realizzazione e collaudo di un elemento chiave del circuito: il simulatore di polmone. Quest’ultimo è concepito per modellizzare la biomeccanica polmonare in condizioni sia patologiche che fisiologiche, attraverso una combinazione meccano-pneumatica di resistenza e compliance. I test effettuati sulla configurazione a singolo paziente hanno riportato ottimi risultati in termini di andamento di pressione, flusso e volume in caso di pressione di fine espirazione positiva (PEEP), mentre in mancanza di quest’ultima si sono evidenziati alcuni limiti del sistema da superare. Tuttavia, l’esito complessivo è stato positivo dal momento che la combinazione e l’interazione tra gli elementi, insieme all’acquisizione dei parametri d’interesse sono stati validati con successo in diverse condizioni. Inoltre, la linea di distribuzione è stata testata separatamente al fine di valutare la capacità del sistema di fornire lo stesso valore di pressione a tutte le derivazioni paziente, senza significative perdite di carico. Anche in questo caso si sono ottenuti buoni risultati per entrambi i diametri interni considerati, 40 mm e 50 mm, in condizioni di flusso nominale, benché la prima opzione richieda di essere valutata attentamente per flussi più elevati. Alla luce di ciò, è legittimo affermare che sussistano tutti i requisiti necessari per procedere in breve tempo ad una estensione dell’attività sperimentale su più ampia scala.
Development and validation of an experimental setup for the testing of a multiple emergency ventilator
Buetikofer, Luca;BERTAZZONI, TOMMASO
2020/2021
Abstract
During the past two years, SARS-CoV-2 pandemic has been hitting countries worldwide with a catastrophic impact on healthcare systems. The disruption of healthcare services caused severe lack of resources such as medical devices, including life support systems, and adequate facilities for the treatment of patients. The MEV (Multiple Emergency Ventilator) project took shape in March 2020 with the purpose of making up for the critical lack of mechanical ventilation systems and was recognised in December 2020 by Politecnico di Milano within the Polisocial Programme, with the name of MakingMEV. Its concept is that of a multiple emergency ventilation system able to feed up to 10 intubated patients with a constant driving pressure, through a single distribution line and medical oxygen source. The present thesis work aims at developing and validating an experimental setup for the testing of this ventilation system. To do so, a single-patient configuration was assessed as a significant and representative choice, in view of a future up-scaling of the experimental work embracing the entire system. Most of this thesis work was therefore focused on the design, manufacturing and testing of a key element to the mentioned configuration: the model lung. The latter is meant to model lungs biomechanics in both physiological and pathological conditions, in the form of a mechano-pneumatic combination of resistance and compliance. The results of the single-patient configuration tests showed optimal outcomes in terms of pressure, flow and volume patterns in case a positive end-expiratory pressure (PEEP) was set, while with zero end-expiratory pressure (ZEEP) there are still some limits to be overcome. Though, the overall result was satisfactory as the combination and interplay of elements, together with the acquisition of the variables of interest were successfully tested in several conditions. In addition, the distribution pipeline was separately tested in order to evaluate its impact on head losses, since maintaining a constant pressure up to each patient derivation is the core principle of MEV. Results were successful for both pipelines with 40 mm and 50 mm inner diameter, as far as nominal working conditions were respected. Yet, the former alternative needs to be more carefully weighed in case of extreme working conditions (high flows). In view of all this, it is legitimate to state that requirements were met for a short-term up-scaling of experimental activity.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary_Bertazzoni_Buetikofer.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Master_Thesis_Bertazzoni_Buetikofer.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Master Thesis
Dimensione
10.79 MB
Formato
Adobe PDF
|
10.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187144