Due to valvular degeneration and the lack of pharmacological therapies, a surgical procedure is imperative before the patient develops irreversible cardiomyopathy. Despite the reliability and the good clinical results of mechanical and biological prostheses, in the last 30 years research in tissue engineering is focused on the development of Tissue-Engineered Heart Valves (TEHVs), which could represent a valid alternative. Preclinical trials have shown that in medium-long term aortic TEHVs develop valvular leaflets retraction, which leads to the onset of valvular insufficiency. In the present work to overcome this problem, it is proposed a new valvular design characterized by a 3D structure on the leaflets, that should allow a higher leaflets extension during the closing phase. It has been studied the possibility to manufacture a wavy geometry using both Electrospinning (ES) and Electrospinning with a x-y translating platform (XY-ES), testing collectors with different geometry and dimensions. This phase of the study showed that XY-ES is the most appropriate manufacturing technique to obtain uniform mats with no macro and microdefects and the same geometry as the one of the collectors. Using gelatin B as a case study, the minimum dimension obtainable in our set-up for ridges radius and grooves width was 0.1 cm and 0.5 cm, respectively. The optimization of the electrospinning parameters for gelatin B, polycaprolactone (PCL) and PCL/gelatin B blend allowed to produce fibrous structures with submicrometric fibers and a low presence of defects. To ensure the stability of the natural polymer in water, gelatin B and blend mats were chemically crosslinked with an EDC/NHS protocol. Thanks to its hydrophobic nature PCL was the only one to maintain its geometry and dimensions once immersed in water. A dimensional and structural study allowed to design and produce the new valvular scaffolds, implementing the XY-ES set-up with a cylindrical support on the stage. Overall, in the present work it has been proven that is possible to manufacture fibrous mats with a millimetric wavy geometry and monocomponent TEHVs with XY-ES.
In presenza di degenerazione valvolare acuta è necessario intervenire chirurgicamente prima che il paziente sviluppi cardiomiopatia irreversibile. Nonostante l’affidabilità e i buoni risultati clinici delle protesi biologiche e meccaniche, negli ultimi 30 anni la ricerca nell’ingegneria dei tessuti si è focalizzata sullo sviluppo di valvole cardiache ingegnerizzate (TEHVs), che potrebbero costituire una valida alternativa. Gli studi preclinici hanno mostrato che nel medio-lungo termine per le TEHVs aortiche si ha retrazione dei foglietti valvolari, che porta conseguentemente a insufficienza valvolare. Nel presente lavoro, per superare questo problema, è stato proposto un nuovo design valvolare caratterizzato da foglietti con una struttura 3D, che dovrebbe permettere una maggiore estensione dei foglietti durante la fase di chiusura. È stata studiata la possibilità di fabbricare una geometria pieghettata mediante l’Electrospinning (ES) e l’Electrospinning dotato di una piattaforma traslante lungo gli assi x-y (XY-ES) e testando collettori con diverse geometrie e dimensioni. Da questa fase dello studio è stato evinto che l’XY-ES risulta il metodo di fabbricazione più appropriato per ottenere membrane uniformi prive di difetti e con la stessa geometria del collettore. Utilizzando gelatina B, la dimensione minima ottenibile con il nostro set-up per il raggio delle creste e l’ampiezza delle valli è stata di 0.1 cm e 0.5 cm rispettivamente. L’ottimizzazione dei parametri di processo per la gelatina B, il policaprolattone (PCL) e un blend PCL/gelatina B ha permesso di produrre strutture fibrose con fibre submicrometriche e pochi difetti. Per assicurare la stabilità del polimero naturale in acqua, le matrici in gelatina B e blend sono state reticolate chimicamente con EDC e NHS. Grazie alla sua natura idrofobica il PCL è stato l’unico materiale a mantenere la sua geometria e le dimensioni una volta immerso in acqua. Attraverso uno studio dimensionale e strutturale è stato possibile progettare e produrre i nuovi scaffold valvolari, implementando il set-up dell’XY-ES con un supporto cilindrico sulla piattaforma. In conclusione, il presente lavoro ha dimostrato la possibilità di fabbricare membrane fibrose con pieghe millimetriche e TEHVs monocomponenti con l’XY-ES.
Sviluppo di un nuovo design per l'ingegnerizzazione di valvole cardiache : strutturazione 3D di membrane elettrofilate
De Marchi Giusto, Giulia;Cresti, Valentina
2020/2021
Abstract
Due to valvular degeneration and the lack of pharmacological therapies, a surgical procedure is imperative before the patient develops irreversible cardiomyopathy. Despite the reliability and the good clinical results of mechanical and biological prostheses, in the last 30 years research in tissue engineering is focused on the development of Tissue-Engineered Heart Valves (TEHVs), which could represent a valid alternative. Preclinical trials have shown that in medium-long term aortic TEHVs develop valvular leaflets retraction, which leads to the onset of valvular insufficiency. In the present work to overcome this problem, it is proposed a new valvular design characterized by a 3D structure on the leaflets, that should allow a higher leaflets extension during the closing phase. It has been studied the possibility to manufacture a wavy geometry using both Electrospinning (ES) and Electrospinning with a x-y translating platform (XY-ES), testing collectors with different geometry and dimensions. This phase of the study showed that XY-ES is the most appropriate manufacturing technique to obtain uniform mats with no macro and microdefects and the same geometry as the one of the collectors. Using gelatin B as a case study, the minimum dimension obtainable in our set-up for ridges radius and grooves width was 0.1 cm and 0.5 cm, respectively. The optimization of the electrospinning parameters for gelatin B, polycaprolactone (PCL) and PCL/gelatin B blend allowed to produce fibrous structures with submicrometric fibers and a low presence of defects. To ensure the stability of the natural polymer in water, gelatin B and blend mats were chemically crosslinked with an EDC/NHS protocol. Thanks to its hydrophobic nature PCL was the only one to maintain its geometry and dimensions once immersed in water. A dimensional and structural study allowed to design and produce the new valvular scaffolds, implementing the XY-ES set-up with a cylindrical support on the stage. Overall, in the present work it has been proven that is possible to manufacture fibrous mats with a millimetric wavy geometry and monocomponent TEHVs with XY-ES.File | Dimensione | Formato | |
---|---|---|---|
2022_04_Cresti_De Marchi Giusto_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
9.83 MB
Formato
Adobe PDF
|
9.83 MB | Adobe PDF | Visualizza/Apri |
2022_04_Cresti_De Marchi Giusto_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187392