This Master Thesis provides a complete overview over the topic of food delivery, and, in particular, on Kitchens for Delivery: Dark, Ghost and Cloud Kitchens. This was done trough multiple steps: at first an analysis of the available literature on the topic was performed, to discover that the information about the topic was a few and vague. The fist aim has been to analyze the market and categorize the different business model under a shared classification, by identifying the steps to follow for the model selection and the distinctive characteristics. Then the focus was shifted to the performances of the different models, trough simulations, interviews with practitioners and indicators analysis. Starting by the information obtained trough the theoretical study of the models, a simulation study was performed to compare the distribution network performances of a traditional network of restaurants for food delivery and the ones of network where the same orders were placed to a Ghost Kitchen, under different casuistries: the process was performed to then compare the results was in terms of performance improvement and costs, to see how the delivery problem changes. Consequently, trough an interview with KTCHN LAB Milano, also the performances inside the kitchens have been evaluated. Starting from the results obtained trough this work a complete set of Key Performance Indicators was developed and the performance of the models were compared in a qualitative analysis, to understand the reasons that push to the selection of one model rather than the other. In conclusion, this project contributes to enhancing the knowledge about the topic of Kitchen for Delivery, both from a theoretical, by classifying the models and the model adoption journey, and a practical point of view, by analyzing the performance of the different models, filling the gaps found in the literature.
Questa tesi di laurea magistrale fornisce una panoramica completa sul tema del food delivery ed, in particolare, sulle cosiddette cucine per il Delivery: Dark, Ghost e Cloud Kitchens. Lo studio è stato sviluppato attraverso più passaggi: dapprima è stata effettuata un'analisi delle informazioni disponibili in letteratura sull'argomento, per poi comprendere che le ultime erano non in gran numero e piuttosto vaghe. Il primo obiettivo è stato quindi quello di analizzare il mercato e classificare i diversi modelli di business tramite una classificazione condivisa, individuando i passaggi da seguire per la selezione del modello e le caratteristiche distintive di ognuno. Quindi l'attenzione si è spostata sulle prestazioni dei diversi modelli, attraverso simulazioni, interviews con esperti e analisi di indicatori. Partendo dalle informazioni ottenute attraverso lo studio teorico dei modelli, è stato condotto uno studio tramite simulazioni, per confrontare le prestazioni della rete distributiva nel caso tradizionale di ristoranti che effettuano consegna a domicilio e quelle di una rete dove gli stessi ordini sono assegnati ad una Ghost Kitchen, il tutto in diverse casistiche: il processo è stato eseguito per confrontare i risultati in termini di miglioramento delle prestazioni e costi, per comprendere come cambia il problema di consegna. Successivamente tramite un incontro con KTCHN LAB Milano, sono state valutate anche le performance all’interno delle cucine. Partendo dai risultati ottenuti tramite questo studio è stato sviluppato un set completo di indicatori di performance e le prestazioni dei vari modelli sono state confrontate in un'analisi qualitativa, per comprendere le ragioni che spingono alla scelta di un modello piuttosto che dell'altro. In conclusione, questo progetto contribuisce ad approfondire le conoscenze sul tema della cucine per il Delivery, sia da un punto di vista teorico, classificando i modelli e gli step per l’adozione di un modello, sia da un punto di vista pratico, analizzando le prestazioni dei diversi modelli, rispondendo ad lacune riscontrate in letteratura.
Dark, cloud and ghost kitchens : a comprehensive study to assess business models and performances
AMARETTI, FILIPPO
2020/2021
Abstract
This Master Thesis provides a complete overview over the topic of food delivery, and, in particular, on Kitchens for Delivery: Dark, Ghost and Cloud Kitchens. This was done trough multiple steps: at first an analysis of the available literature on the topic was performed, to discover that the information about the topic was a few and vague. The fist aim has been to analyze the market and categorize the different business model under a shared classification, by identifying the steps to follow for the model selection and the distinctive characteristics. Then the focus was shifted to the performances of the different models, trough simulations, interviews with practitioners and indicators analysis. Starting by the information obtained trough the theoretical study of the models, a simulation study was performed to compare the distribution network performances of a traditional network of restaurants for food delivery and the ones of network where the same orders were placed to a Ghost Kitchen, under different casuistries: the process was performed to then compare the results was in terms of performance improvement and costs, to see how the delivery problem changes. Consequently, trough an interview with KTCHN LAB Milano, also the performances inside the kitchens have been evaluated. Starting from the results obtained trough this work a complete set of Key Performance Indicators was developed and the performance of the models were compared in a qualitative analysis, to understand the reasons that push to the selection of one model rather than the other. In conclusion, this project contributes to enhancing the knowledge about the topic of Kitchen for Delivery, both from a theoretical, by classifying the models and the model adoption journey, and a practical point of view, by analyzing the performance of the different models, filling the gaps found in the literature.File | Dimensione | Formato | |
---|---|---|---|
2022_04_Amaretti_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
2022_04_ Amaretti_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
23.29 MB
Formato
Adobe PDF
|
23.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187592