Silicon Photonics is a wide-spread technology that allows the fabrication of photonic integrated circuits of growing complexity able to realize sophisticate optical functionalities. Its progress has been hindered by the extreme sensitivity of silicon to temperature drifts and fabrication tolerances, that prevent open-loop operations of complex architectures. To overcome this limitation, a closed-loop approach must be employed, by implementing a real-time stabilization of the working point of each photonic device thanks to integrated light sensors and actuators. The increasing complexity of photonic chips requires a multi-channel electronic system to carry out this fundamental control action, making FPGA-based solutions well suited thanks to the intrinsic parallelism they can achieve. This thesis work focuses on the general optimization of the control algorithms carried out by the FPGA, mounted in a previously designed electronic system specifically conceived for photonic applications. The objective of the thesis is to implement efficient feedback loops able to control many photonic devices in parallel, while still preserving a high reliability. For this reason, the FPGA firmware has been optimized to meet these requirements. Several solutions were investigated in the thesis. A control strategy based on the dithering technique has been studied and optimized, in order to implement a control system that is both calibration-free and power independent. The bandwidth of the feedback loop has been extended thanks to the introduction of a zero-pole compensation network that improves the phase-margin. Then, several strategies that can be used to control multiple photonic devices with a small number of equivalent sensors and actuators have been studied. In particular, two main approaches were investigated, based on the possibility to use a single sensor to control more cascaded optical devices and on time-division multiplexing of the electrical signals coming from and going to the photonic chip. Finally, given the complexity of the implemented firmware, the timing closure has been addressed, to make the design more stable and deterministic. All the proposed solutions have been experimentally validated, proving the correctness of the approach and the benefits of the optimized system. The FPGA architecture is thus now suitable to efficiently control complex photonic chips, integrating a large number of devices and performing state-of-the-art optical processing.
La Silicon Photonics è una tecnologia diffusa che consente la fabbricazione di circuiti di complessità crescente in grado di realizzare funzionalità ottiche sofisticate. Il suo sviluppo è stato ostacolato dall'estrema sensibilità del silicio alle variazioni di temperatura e alle tolleranze di fabbricazione, impedendo così l'utilizzo ad anello aperto di architetture complesse. Per superare questo limite, va utilizzato un approccio ad anello chiuso, implementando una stabilizzazione in tempo reale del punto di lavoro di ogni dispositivo fotonico grazie all'utilizzo di sensori e attuatori integrati. La complessità crescente dei circuiti fotonici richiede un sistema elettronico multicanale per implementare questa azione di controllo, rendendo naturale la scelta di un FPGA per gestire l'elevato parallelismo del sistema. Questo lavoro di tesi si concentra su un'ottimizzazione generale degli algoritmi di controllo implementati nell'FPGA, integrato in un sistema elettronico precedentemente sviluppato appositamente pensato per applicazioni fotoniche. L'obiettivo di questa tesi è l'implementazione di un efficace sistema ad anello chiuso in grado di controllare molti dispositivi ottici in parallelo, pur mantenendo un'alta affidabilità. Per soddisfare questi requisiti il firmware dell'FPGA è stato largamente ottimizzato. La soluzione proposta in questa tesi, basata sulla tecnica di dithering, è stata studiata e ottimizzata per implementare un sistema di controllo indipendente dalla potenza che non richiede alcuna calibrazione. La banda dell'anello di retroazione è stata estesa grazie all'introduzione di una rete anticipatrice composta da uno zero e un polo per migliorare il margine di fase. Diverse strategie possono essere usate per controllare svariati dispositivi con un elevato numero di sensori e attuatori. In particolare, due le principali strategie indagate. La prima è basata sulla possibilità di utilizzare un singolo sensore per controllare più dispositivi ottici in cascata, la seconda invece basata sul time-division multiplexing di segnali elettrici provenienti dal e diretti al chip fotonico. Infine, data la complessità del firmware implementato, è stato affrontato il problema della "Timing Closure", al fine di rendere il design più stabile e deterministico. Tutte le soluzione proposte sono state validate sperimentalmente dimostrando la correttezza dell'approccio utilizzato e i benefici di un tale sistema ottimizzato. L'architettura del firmware è ora adatta per controllare complessi sistemi fotonici che integrano un elevato numero di dispositivi e che implementano un'elaborazione di segnali ottici allo stato dell'arte.
Multichannel digital system for closed-loop control of densely-integrated photonic circuits
MONTI, FEDERICO
2020/2021
Abstract
Silicon Photonics is a wide-spread technology that allows the fabrication of photonic integrated circuits of growing complexity able to realize sophisticate optical functionalities. Its progress has been hindered by the extreme sensitivity of silicon to temperature drifts and fabrication tolerances, that prevent open-loop operations of complex architectures. To overcome this limitation, a closed-loop approach must be employed, by implementing a real-time stabilization of the working point of each photonic device thanks to integrated light sensors and actuators. The increasing complexity of photonic chips requires a multi-channel electronic system to carry out this fundamental control action, making FPGA-based solutions well suited thanks to the intrinsic parallelism they can achieve. This thesis work focuses on the general optimization of the control algorithms carried out by the FPGA, mounted in a previously designed electronic system specifically conceived for photonic applications. The objective of the thesis is to implement efficient feedback loops able to control many photonic devices in parallel, while still preserving a high reliability. For this reason, the FPGA firmware has been optimized to meet these requirements. Several solutions were investigated in the thesis. A control strategy based on the dithering technique has been studied and optimized, in order to implement a control system that is both calibration-free and power independent. The bandwidth of the feedback loop has been extended thanks to the introduction of a zero-pole compensation network that improves the phase-margin. Then, several strategies that can be used to control multiple photonic devices with a small number of equivalent sensors and actuators have been studied. In particular, two main approaches were investigated, based on the possibility to use a single sensor to control more cascaded optical devices and on time-division multiplexing of the electrical signals coming from and going to the photonic chip. Finally, given the complexity of the implemented firmware, the timing closure has been addressed, to make the design more stable and deterministic. All the proposed solutions have been experimentally validated, proving the correctness of the approach and the benefits of the optimized system. The FPGA architecture is thus now suitable to efficiently control complex photonic chips, integrating a large number of devices and performing state-of-the-art optical processing.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
517.52 kB
Formato
Adobe PDF
|
517.52 kB | Adobe PDF | Visualizza/Apri |
Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
12.74 MB
Formato
Adobe PDF
|
12.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187595