The porous thin films obtained by depositing nanoparticles on an inert substrate are used in various fields and have considerable potential; to obtain these films, techniques such as "gas aggregation source" (GAS) and "pulsed laser deposition" (PLD) in high pressure ambient gas have been developed. The final morphology of the thin films deposited with these techniques with directed beam is characterized by the presence of columns whose tilt angle with respect to the substrate (β) depends on the angle at which the nanoparticle beam is deposited on the substrate (θ). A relationship between θ and β for the directional deposition of nanoparticles is not currently available through simulation; indeed the presence of a size distribution of the nanoparticles requires a very high computational cost. This work illustrates a macroscopic physical model that allows to observe the growth of columnar structures qualitatively similar to those present in the thin films obtained from the directional deposition of nanoparticles. The nanometer-sized particles are simulated here by droplets of icy, spherical, micrometric-sized water, present inside a spray, which are deposited on a glass substrate. Thesis work is divided into two parts. The first part studies the behavior of the spray at room temperature when it is deposited on a glass substrate also at room temperature; from the obtained results it is possible to identify and describe the evolution stages of the drops formed on the substrate. In the second part of the thesis, starting from the information obtained in the previous part, an experimental setup is built that allows the deposition of frozen water droplets. These, stacked together, create structures which are subsequently analyzed using a stereomicroscope. By experimenting with different deposition angles θ and by measuring the tilt angles β of the obtained structures, it was possible to find a parabolic relationship between θ and β. This relationship can be compared with the "tangent rule" valid for describing the columnar growth of films made up of bundles of atoms. The difference between the two relations is due both to the size of the water droplets and to their wide dimensional distribution, far from the monodisperse one of the atomic case. The macroscopic model adopted in this work appears to be able to experimentally reproduce the growth of structures on a substrate during the deposition of nanoparticles.
I film sottili porosi ottenuti tramite deposizione di nanoparticelle su un substrato inerte sono utilizzati in diversi campi e presentano notevoli potenzialità; per ottenere questi film sono state sviluppate tecniche come la “gas aggregation source”(GAS) e la “pulsed laser deposition” (PLD) in gas ambiente ad alta pressione. La morfologia finale dei film sottili depositati con queste tecniche con fascio direzionato è caratterizzata dalla presenza di colonne il cui angolo di inclinazione rispetto al substrato (β) dipende dall’angolo con cui il fascio di nanoparticelle si deposita sul substrato (θ). Attualmente non è disponibile tramite simulazione una relazione tra θ e β per la deposizione direzionale di nanoparticelle; la presenza di una distribuzione di dimensioni delle nanoparticelle richiede infatti un costo computazionale molto elevato. In questo lavoro viene illustrato un modello fisico macroscopico che permette di osservare la crescita di strutture colonnari qualitativamente simili a quelle presenti nei film sottili ottenuti da deposizione direzionale di nanoparticelle. Le particelle di dimensioni nanometriche sono qui simulate da gocce d’acqua ghiacciata, sferiche, di dimensioni micrometriche, presenti all’interno di un nebulizzato, che si depositano su un substrato di vetro. Il lavoro di Tesi è diviso in due parti. Nella prima parte si studia il comportamento del nebulizzato a temperatura ambiente quando esso viene depositato su un substrato di vetro anch’esso a temperatura ambiente; dai risultati ottenuti è possibile individuare e descrivere gli stadi di evoluzione delle gocce formate sul substrato. Nella seconda parte della Tesi, a partire dalle informazioni ottenute nella parte precedente, si costruisce un setup sperimentale che permette la deposizione di gocce d’acqua ghiacciate. Queste, impilandosi tra di loro, creano delle strutture che vengono successivamente analizzate usando uno stereomicroscopio. Facendo esperimenti con diversi angoli di deposizione θ e misurando gli angoli di inclinazione β delle strutture ottenute è stato possibile trovare una relazione parabolica tra θ e β. Tale relazione può essere confrontata con la “legge delle tangenti” valida per descrivere la crescita colonnare di film costituiti da fasci di atomi. La differenza tra le due relazioni è dovuta sia alle dimensioni delle gocce d’acqua, sia alla loro ampia distribuzione dimensionale, lontana da quella monodispersa del caso atomico. Il modello macroscopico adottato in questo lavoro appare in grado di riprodurre sperimentalmente la crescita di strutture su un substrato durante la deposizione di nanoparticelle.
A macroscopic physical model for the micro-structure of nanoparticle arrays grown under directional deposition
Pavesi, Davide
2020/2021
Abstract
The porous thin films obtained by depositing nanoparticles on an inert substrate are used in various fields and have considerable potential; to obtain these films, techniques such as "gas aggregation source" (GAS) and "pulsed laser deposition" (PLD) in high pressure ambient gas have been developed. The final morphology of the thin films deposited with these techniques with directed beam is characterized by the presence of columns whose tilt angle with respect to the substrate (β) depends on the angle at which the nanoparticle beam is deposited on the substrate (θ). A relationship between θ and β for the directional deposition of nanoparticles is not currently available through simulation; indeed the presence of a size distribution of the nanoparticles requires a very high computational cost. This work illustrates a macroscopic physical model that allows to observe the growth of columnar structures qualitatively similar to those present in the thin films obtained from the directional deposition of nanoparticles. The nanometer-sized particles are simulated here by droplets of icy, spherical, micrometric-sized water, present inside a spray, which are deposited on a glass substrate. Thesis work is divided into two parts. The first part studies the behavior of the spray at room temperature when it is deposited on a glass substrate also at room temperature; from the obtained results it is possible to identify and describe the evolution stages of the drops formed on the substrate. In the second part of the thesis, starting from the information obtained in the previous part, an experimental setup is built that allows the deposition of frozen water droplets. These, stacked together, create structures which are subsequently analyzed using a stereomicroscope. By experimenting with different deposition angles θ and by measuring the tilt angles β of the obtained structures, it was possible to find a parabolic relationship between θ and β. This relationship can be compared with the "tangent rule" valid for describing the columnar growth of films made up of bundles of atoms. The difference between the two relations is due both to the size of the water droplets and to their wide dimensional distribution, far from the monodisperse one of the atomic case. The macroscopic model adopted in this work appears to be able to experimentally reproduce the growth of structures on a substrate during the deposition of nanoparticles.File | Dimensione | Formato | |
---|---|---|---|
Thesis1 7Aprile.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis Davide Pavesi
Dimensione
6.1 MB
Formato
Adobe PDF
|
6.1 MB | Adobe PDF | Visualizza/Apri |
Executive summary 7Aprile.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary Davide Pavesi
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187826