Fibres-reinforced elastomers (FRE) are progressively becoming materials of larger interest and application in soft robotics and biomedical field. This growing interest is justified by the peculiar mechanical behaviour showed by this type of composites, characterized by a high deformability, which in combination with their anisotropic mechanical response, can be exploited to mimic natural complex movements through the application of simple stimuli. This thesis work is aimed at studying the mechanical behaviour of a FRE constituted by continuous glass-fibres embedded in a polydimethylsiloxane (PDMS) matrix of Sylgard 184. The mechanical properties of a lamina have been investigated, focusing on the evaluation of the transversal modulus, E2, and in-plane shear modulus, G12, for different fibres volume fractions. For E2 measurement, quasi-static tensile tests have been conducted on unidirectional laminates while, for G12, symmetric ±45° angle-ply laminates were used. Moduli values higher than the ones predicted by the commonly employed micromechanical models were obtained, suggesting that the rubber molecules mobility reduction, typically occurring in filled elastomers, and rubber confinement effects, are responsible for a significant matrix stiffening. Since the matrix is an elastomer, in the studied FRE strains larger than those of conventional composites are reached, thus further investigations on different laminates have been performed. Monotonic and cyclic tensile tests have been carried out on symmetric ±30°, ±45°, ±60° and ±75° angle-ply laminates. The tensile stress-strain curves are highly non-linear, qualitatively recalling that of the neat elastomeric matrix, characterized by a linear behaviour at small strains, followed by an intermediate “softened” region extended for a wide strain range and by an almost constant curve slope, and a final “hardening” region at high strains, characterized by an increasing curve slope. Fibres re-orientation have been evaluated and resulted to be related also to changes observed in laminate’s thickness. A fibre angle threshold below which the fibres contribution to the composite stiffness is predominant have been also identified. Due to the highly non-linear response, to significant changes in fibres orientation, and to the lack of adequate predictive models, deeper studies on FREs are necessary for the proper design of products to be used in soft robotics applications. This thesis work is a first step in this direction.
I compositi elastomerici fibro-rinforzati (FRE) stanno progressivamente diventando materiali di ampio interesse, con applicazioni nel campo biomedico e della soft robotics. Questo crescente interesse è giustificato dal peculiare comportamento meccanico mostrato da questo tipo di compositi, in quanto caratterizzati da un’elevata deformabilità, la quale, in combinazione con la loro risposta meccanica anisotropa, può essere sfruttata per imitare movimenti naturali complessi tramite l’applicazione di stimoli semplici. Questo progetto di tesi ha lo scopo di studiare il comportamento meccanico di un FRE costituito da fibre di vetro continue integrate in una matrice polidimetilsilossanica (PDMS) di Sylgard 184. Le proprietà meccaniche della lamina sono state analizzate, focalizzandosi sulla determinazione del modulo trasversale, E2, e del modulo a taglio, G12, per diverse frazioni volumetriche di fibra. Per la misura di E2, sono state eseguite prove di trazione uniassiale su laminati unidirezionali mentre, per G12, sono stati impiegati laminati simmetrici angle-ply a ±45°. Sono stati ottenuti valori dei moduli superiori a quelli predicibili dai modelli micromeccanici comunemente utilizzati; ciò suggerisce che la riduzione di mobilità delle molecole elastomeriche, tipica negli elastomeri caricati, e l’effetto del confinamento della gomma tra le fibre, siano responsabili del significativo irrigidimento della matrice. Considerando che la matrice è un elastomero, nel FRE in esame sono ottenibili deformazioni maggiori rispetto a quelle raggiunte dai compositi convenzionali, ragion per cui ulteriori studi su vari laminati sono stati condotti. Sono state eseguite prove uniassiali monotoniche e cicliche su laminati simmetrici angle-ply a ±30°, ±45°, ±60° and ±75°. Le curve sforzo-deformazione sono fortemente non-lineari, e richiamano qualitativamente quelle dell’elastomero puro. Le curve sono caratterizzate da un comportamento lineare a basse deformazioni, seguito da una zona intermedia per un ampio range di deformazioni, caratterizzata da una minor rigidezza e da una pendenza della curva pressoché costante, e da una terza zona di irrigidimento finale, ad alte deformazioni, in cui la pendenza della curva incrementa progressivamente. È stata valutata la re-orientazione delle fibre, la quale è risultata essere anche legata a variazioni nello spessore del laminato. Un valore limite di angolo delle fibre è stato identificato, oltre il quale il contributo delle fibre alla rigidezza del composito è predominante. Considerando la significativa risposta non lineare, la forte re-orientazione delle fibre, e la mancanza di modelli predittivi adeguati, studi più approfonditi sui FREs risultano essere necessari, in particolare modo in vista della progettazione di prodotti da impiegare in applicazioni nel campo della soft robotics. Questo lavoro di tesi è da considerarsi come un primo passo in questa direzione.
Mechanical characterization of fibres-reinforced elastomers : a study on continuous glass fibres-Sylgard 184 composite
Magni, Dario
2020/2021
Abstract
Fibres-reinforced elastomers (FRE) are progressively becoming materials of larger interest and application in soft robotics and biomedical field. This growing interest is justified by the peculiar mechanical behaviour showed by this type of composites, characterized by a high deformability, which in combination with their anisotropic mechanical response, can be exploited to mimic natural complex movements through the application of simple stimuli. This thesis work is aimed at studying the mechanical behaviour of a FRE constituted by continuous glass-fibres embedded in a polydimethylsiloxane (PDMS) matrix of Sylgard 184. The mechanical properties of a lamina have been investigated, focusing on the evaluation of the transversal modulus, E2, and in-plane shear modulus, G12, for different fibres volume fractions. For E2 measurement, quasi-static tensile tests have been conducted on unidirectional laminates while, for G12, symmetric ±45° angle-ply laminates were used. Moduli values higher than the ones predicted by the commonly employed micromechanical models were obtained, suggesting that the rubber molecules mobility reduction, typically occurring in filled elastomers, and rubber confinement effects, are responsible for a significant matrix stiffening. Since the matrix is an elastomer, in the studied FRE strains larger than those of conventional composites are reached, thus further investigations on different laminates have been performed. Monotonic and cyclic tensile tests have been carried out on symmetric ±30°, ±45°, ±60° and ±75° angle-ply laminates. The tensile stress-strain curves are highly non-linear, qualitatively recalling that of the neat elastomeric matrix, characterized by a linear behaviour at small strains, followed by an intermediate “softened” region extended for a wide strain range and by an almost constant curve slope, and a final “hardening” region at high strains, characterized by an increasing curve slope. Fibres re-orientation have been evaluated and resulted to be related also to changes observed in laminate’s thickness. A fibre angle threshold below which the fibres contribution to the composite stiffness is predominant have been also identified. Due to the highly non-linear response, to significant changes in fibres orientation, and to the lack of adequate predictive models, deeper studies on FREs are necessary for the proper design of products to be used in soft robotics applications. This thesis work is a first step in this direction.File | Dimensione | Formato | |
---|---|---|---|
Dario Magni_Thesis_Mechanical characterization of fibres-reinforced elastomers.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
8.68 MB
Formato
Adobe PDF
|
8.68 MB | Adobe PDF | Visualizza/Apri |
Dario Magni_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187844