Polymer electrolyte membrane fuel cells (PEMFC) are electrochemical devices that are able to directly convert chemical energy into electric energy through the reaction of hydrogen and oxygen. Water is the only product of the reaction. PEMFC are considered to be the most suitable fuel cells for the automotive sector as well as the leading clean energy technologies for this application. This MSc Thesis develops in the framework of Horizon 2020 European project ID-FAST, that has the final goal of promoting PEMFCs for vehicles, through the development of Accelerated Stress Test (AST) protocols to predict and reproduce ageing in real world functioning. The aim of this work is to develop and study new accelerated stress tests in order to understand and reproduce degradation caused by real automotive operating conditions. Thus, taking the ID-FAST driving cycle as a starting point, two specific ASTs representative of Low Power and High Power operations were designed and analyzed. A specific hardware configuration (Multi-Zero Gradient) allowed to test multiple materials during the same degradation protocol. Results showed that the highest loss of performance seemed to be caused by the High Power operating conditions. Part of the recorded losses were attributed to an anodic degradation, therefore An anode cleaning procedure was implemented and applied in order to fully recover all the reversible losses. A Combined AST was developed in order to study the effects on degradation caused by the interplay of the two different operative conditions. High Power conditions seemed to be predominant in the Combined AST. Two samples were tested under the Combined protocol, showing a very good repeatability of the test. In the end, a comparison with degradation caused by complete ID-FAST driving cycle was made: a very good representativeness of the Combined AST was observed. In addition, a modeling activity was performed, with the aim of evaluating the impact of loss of catalyst active area on the degradation measured during experiments. An initial calibration was made on the D.o.E. Electrocatalyst AST, then the model was applied to all the newly developed ASTs. Reduction of catalyst active area was the main degradation contribution, but some minor additional losses were observed at high currents.
Le celle a combustibile con membrana polimerica a scambio protonico, note con l’acronimo inglese PEMFC, sono dispositivi elettrochimici che permettono di convertire l’energia chimica dei reagenti idrogeno e ossigeno in energia elettrica. L’unico prodotto in uscita da questo sistema è acqua. Le PEMFC sono considerate come le celle a combustibile più adatte per il settore automobilistico, così come la tecnologia leader per produrre energia pulita in questo settore. Questa tesi si sviluppa nell’ambito del progetto europeo Horizon 2020 ID-FAST, che punta a promuovere le PEMFC per veicoli attraverso lo sviluppo di protocolli di degrado accelerato (AST) con l’obiettivo di prevedere e riprodurre il degrado che si ha durante il reale funzionamento del veicolo. Questo lavoro mira a studiare e riprodurre il degrado causato dalle reali condizioni di funzionamento dei veicoli. Considerando come base il ciclo di guida sviluppato nel progetto ID-FAST, sono stati progettati e analizzati due nuovi AST, rappresentativi rispettivamente del funzionamento in bassa potenza (Low Power) e alta potenza (High Power). L’ utilizzo della configurazione Multi Zero-Gradient ha permesso di testare più materiali durante il medesimo test di degrado. I risultati hanno mostrato come le condizioni di alta potenza abbiano causato maggiori perdite di performance rispetto a quelle di bassa potenza. Parte delle perdite registrate sono state attribuite ad un degrado anodico, perciò una procedura di pulizia del catalyst layer anodico è stata implementata e applicata per recuperare le perdite reversibili. Successivamente è stato sviluppato un AST combinato in modo da studiare il degrado causato dalla combinazione di alta e bassa potenza. La prima è risultata come la predominante nelle perdite di questo nuovo AST. Due campioni sono stati sottoposti all’AST Combined, mostrando un’ elevata ripetibilità del test. Infine i risultati del degrado combinato sono stati confrontati con quelli provenienti dall’applicazione del ciclo di guida ID-FAST completo. Il degrado è risultato estremamente comparabile fra i due test, mostrando come il Combined AST sia rappresentativo di un degrado reale. Un’attività modellistica è stata aggiunta a quella sperimentale per valutare l’impatto della perdita di area attiva di catalizzatore sulla complessiva perdita di performance. Il modello 1D utilizzato è stato dapprima calibrato sui dati ottenuti dal D.o.E. AST Electrocatalyst, poi applicato ai nuovi AST. La perdita di area attiva è risultata la causa principale di degrado, con ulteriori perdite minori ad alte correnti.
Design and validation of new Accelerated Stress Tests for the experimental analysis of hydrogen PEM fuel cell degradation under real world automotive operation
Mora, Daniele
2020/2021
Abstract
Polymer electrolyte membrane fuel cells (PEMFC) are electrochemical devices that are able to directly convert chemical energy into electric energy through the reaction of hydrogen and oxygen. Water is the only product of the reaction. PEMFC are considered to be the most suitable fuel cells for the automotive sector as well as the leading clean energy technologies for this application. This MSc Thesis develops in the framework of Horizon 2020 European project ID-FAST, that has the final goal of promoting PEMFCs for vehicles, through the development of Accelerated Stress Test (AST) protocols to predict and reproduce ageing in real world functioning. The aim of this work is to develop and study new accelerated stress tests in order to understand and reproduce degradation caused by real automotive operating conditions. Thus, taking the ID-FAST driving cycle as a starting point, two specific ASTs representative of Low Power and High Power operations were designed and analyzed. A specific hardware configuration (Multi-Zero Gradient) allowed to test multiple materials during the same degradation protocol. Results showed that the highest loss of performance seemed to be caused by the High Power operating conditions. Part of the recorded losses were attributed to an anodic degradation, therefore An anode cleaning procedure was implemented and applied in order to fully recover all the reversible losses. A Combined AST was developed in order to study the effects on degradation caused by the interplay of the two different operative conditions. High Power conditions seemed to be predominant in the Combined AST. Two samples were tested under the Combined protocol, showing a very good repeatability of the test. In the end, a comparison with degradation caused by complete ID-FAST driving cycle was made: a very good representativeness of the Combined AST was observed. In addition, a modeling activity was performed, with the aim of evaluating the impact of loss of catalyst active area on the degradation measured during experiments. An initial calibration was made on the D.o.E. Electrocatalyst AST, then the model was applied to all the newly developed ASTs. Reduction of catalyst active area was the main degradation contribution, but some minor additional losses were observed at high currents.File | Dimensione | Formato | |
---|---|---|---|
2022_04_Mora.pdf
Open Access dal 11/04/2023
Descrizione: Thesis
Dimensione
9.51 MB
Formato
Adobe PDF
|
9.51 MB | Adobe PDF | Visualizza/Apri |
2022_04_Mora_Executive_Summary.pdf
Open Access dal 11/04/2023
Descrizione: Executive Summary
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/187854