The energy production is gradually moving towards renewable sources to satisfy the limitations concerning the use of fossil fuels. The transition from fossil fuels-fired plants to carbon-neutral energy industry is promoted by the development and improvement of wind energy exploitation. A preliminary design of wind turbine is fundamental to avoid wrong predictions of load and performance, leading to have inconsistent results compared to the reality. An accurate evaluation of the wind turbine aerodynamics is performed by Computational Fluid Dynamics (CFD) codes, but due to the expensive computational effort, other low-fidelity simulation codes have great relevance on load and performance predictions. The highly unsteady aerodynamics around the wind turbine must be modelled by semi-empirical methods able to simplify the non-linearity of such phenomenon which significantly affects the results. The unsteady aerodynamic models provide a strong tool especially analyzing a Floating Offshore Wind Turbine (FOWT), because of the presence of the platform which introduces six degrees of freedom, augmenting the complexity of the aerodynamic environment. The objective of this thesis is to evaluate the aerodynamic response of the NREL 5MW baseline wind turbine in two configurations using OpenFAST: the fixed-bottom tower configuration, used to validate the correction of an unsteady aerodynamic model, and the floating one, used to understand the differences in terms of calculations of rotor power and rotor thrust between CFD solvers and OpenFAST. In the latter case, different pitching motion laws have been imposed to the platform, evidencing how the aerodynamic response is affected by the increasing of the pitching motion intensity. In the last part of the thesis, an extreme though realistic condition has been simulated to better understand the pitching oscillation under which a FOWT is subject during a storm.
La produzione di energia si sta gradualmente orientando verso fonti di energia rinnovabile per soddisfare le limitazioni imposte sull’utilizzo di combustibili fossili. La transizione da impianti alimentati a combustibili fossili a un’industria elettrica sostenibile è agevolata dallo sviluppo e miglioramento dello sfruttamento dell’energia eolica. Una preliminare progettazione della turbina eolica è fondamentale per evitare una scorretta previsione dei carichi e delle potenze portando ad avere dei risultati inconsistenti con la realtà. Una valutazione accurata dell’aerodinamica relativa alla turbina eolica è compiuta dalle simulazioni CFD, ma a causa dell’elevato sforzo computazionale, altri codici meno accurati hanno un’importante rilevanza nella stima delle performances. L’alta non stazionarietà dell’aerodinamica vicino la turbina eolica deve necessariamente essere modellata da metodi semi-empirici capaci di semplificare la non linearità presente in questo fenomeno che notevolmente influenza i risultati. Questi modelli rappresentano un forte strumento soprattutto per l’analisi delle turbine eoliche offshore flottanti, perché la presenza della piattaforma flottante introduce sei gradi di libertà, aumentando così la complessità dell’ambiente aerodinamico. L’obiettivo di questa tesi è di valutare la risposta aerodinamica della turbina virtuale NREL 5MW in due configurazioni utilizzando il software OpenFAST: il caso di turbina fissa, usato per validare la correzione di un modello aerodinamico instazionario, e il caso di turbina flottante, usato per capire le differenze tra simulazioni CFD e OpenFAST riguardo i risultati di potenza e carico del rotore. In quest’ultimo caso, differenti moti di beccheggio sono stati imposti alla piattaforma, evidenziando come la risposta aerodinamica è influenzata dall’incremento dell’intensità del moto di beccheggio. Nell’ultima parte della tesi, è stato simulato un caso reale di condizioni estreme per capire a fondo l’oscillazione della turbina flottante durante una tempesta.
An investigation of unsteady aerodynamic models for load and performance predictions of floating off-shore wind turbine
Zappulla, Alessandra
2021/2022
Abstract
The energy production is gradually moving towards renewable sources to satisfy the limitations concerning the use of fossil fuels. The transition from fossil fuels-fired plants to carbon-neutral energy industry is promoted by the development and improvement of wind energy exploitation. A preliminary design of wind turbine is fundamental to avoid wrong predictions of load and performance, leading to have inconsistent results compared to the reality. An accurate evaluation of the wind turbine aerodynamics is performed by Computational Fluid Dynamics (CFD) codes, but due to the expensive computational effort, other low-fidelity simulation codes have great relevance on load and performance predictions. The highly unsteady aerodynamics around the wind turbine must be modelled by semi-empirical methods able to simplify the non-linearity of such phenomenon which significantly affects the results. The unsteady aerodynamic models provide a strong tool especially analyzing a Floating Offshore Wind Turbine (FOWT), because of the presence of the platform which introduces six degrees of freedom, augmenting the complexity of the aerodynamic environment. The objective of this thesis is to evaluate the aerodynamic response of the NREL 5MW baseline wind turbine in two configurations using OpenFAST: the fixed-bottom tower configuration, used to validate the correction of an unsteady aerodynamic model, and the floating one, used to understand the differences in terms of calculations of rotor power and rotor thrust between CFD solvers and OpenFAST. In the latter case, different pitching motion laws have been imposed to the platform, evidencing how the aerodynamic response is affected by the increasing of the pitching motion intensity. In the last part of the thesis, an extreme though realistic condition has been simulated to better understand the pitching oscillation under which a FOWT is subject during a storm.File | Dimensione | Formato | |
---|---|---|---|
Tesi_def.pdf
non accessibile
Descrizione: Tesi definitiva
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/188340