Tissue Engineering often utilizes bone scaffolds to aid the regeneration process of bone tissue if pathologies or traumatic injuries prevent its autonomous regeneration. The present work analyzes scaffolds made up of a bioactive glass-ceramic material, named 47.5B, which was designed and produced by Politecnico di Torino. The scaffolds have been produced utilizing six different syntherization temperatures, with a minimum temperature of 600°C and a maximum temperature of 850°C, during the fabrication process; in particular, the range of temperatures considered includes the crystallization temperature of the material, circa 690°C. To determine the influence of the syntherization temperature on the structural and mechanical properties of the scaffolds obtained, analysis on multiple scaffolds were operated, both computationally to characterize them from a mechanical point of view, both through experimental tests on bulk samples of the material, one for every syntherization temperature. In particular, the following characteristics were analyzed: - the morphological properties of scaffolds, - elastic characteristics of the structures, - mechanical properties of the bulk material, - resistance to rupture of the scaffolds. The analysis operated on the scaffolds are based on μ-CT scans, which have allowed for the reconstruction of the structure of selected volumes of interest. The morphometric properties that were analyzed are the following: porosity, degree of anisotropy, average trabecular thickness, average pore dimension and permeability. Following these observations, it was possible to characterize the scaffold; in particular a distinction was found between scaffolds characterized by a syntherization temperature higher and lower than the crystallization temperature of the material. The elastic analysis, which was operated on computational reconstructions of the different scaffolds, allowed for the determination of the normalized elastic modulus of the scaffolds. The normalized elastic moduluses of each scaffold were compared to their different morphometric properties, in order to determine a possible correlation between the obtained parameters. In particular, a relation between the normalized elastic modulus and the porosity was inspected, on the basis of models found in literature. Nanoindentation tests were carried out on samples of bulk material, each sample characterized by the same syntherization temperatures of the scaffolds. Different indenters were used to perform the nanoindentation tests: - Berkovich indenter, to determine the elastic modulus and the hardness of the material, - cube corner indenter, to determine the toughness parameter, - spheric indenter, to estimate a value for the material’s strength. The elastic modulus of the scaffolds was determined on the basis of the elastic modulus of the material and the normalized elastic modulus. In order to estimate the material’s strength, two analysis were conducted simultaneously: one computational and one in relation to the toughness parameter. An interval of acceptable values was determined, in order to describe the material’s resistance to fracture generation; the range was found to not be dependent on the syntherization temperatures. Further analysis regarding the mechanical properties of the material are necessary, specifically in regards to the toughness and strength of the material, in order to affine the interval of values that has been determined, and to find a possible correlation between the refined intervals and the syntherization temperatures. The strength analysis of the scaffolds allowed for the visualization of fracture propagation inside the structures, and also allowed for the determination of estimated values for the normalized strength of the scaffolds. The main objective of the following work is to obtain a complete and thorough characterization of the scaffolds in analysis. This will provide data relevant for the creation and validation of a numerical model to properly design scaffolds, including an evaluation of the effects, from a morphometric and mechanical point of view, of the syntherization temperature utilized during the fabrication process. This would enable the identification of which design parameters allow for the obtainment of the desired mechanical and morphometric characteristics in the scaffolds being produced.
Gli scaffold ossei sono dispositivi utilizzati nell’ambito dell’Ingegneria dei Tessuti per aiutare il processo di rigenerazione del tessuto osseo a seguito di patologie o traumi che ne prevengono la rigenerazione autonoma. All’interno di questo lavoro vengono analizzati scaffold realizzati in materiale vetro-ceramico bioattivo, denominato 47.5B, il quale è stato progettato e realizzato presso il Politecnico di Torino. Gli scaffold sono stati realizzati utilizzando sei diverse temperature di sinterizzazione, tra 600°C e 850°C, durante il processo di fabbricazione; in particolare l’intervallo di temperature scelte comprende la temperatura di cristallizzazione del materiale, pari a 690°C. Per determinare l’influenza della temperatura di sinterizzazione sulle proprietà strutturali e meccaniche degli scaffold ottenuti, sono state svolte sia analisi degli scaffold dal punto di vista meccanico nell’ambito computazionale, sia analisi sperimentali di provini in bulk del materiale sinterizzato alle diverse temperature. In particolare, sono stati studiate le seguenti caratteristiche: - le proprietà morfometriche degli scaffold, - le caratteristiche elastiche delle strutture, - le proprietà meccaniche del materiale in bulk, - la resistenza degli scaffold ai fenomeni di rottura. Le analisi relative agli scaffold sono state svolte sulla base di scansioni μ-CT, le quali hanno permesso di ricostruire la struttura di volumi di interesse selezionati. Le proprietà morfometriche che sono state analizzate sono: porosità, grado di anisotropia, spessore medio trabecolare, dimensione media dei pori e permeabilità. A seguito di queste analisi è stato possibile caratterizzare gli scaffold in analisi, in particolare individuando una distinzione tra gli scaffold caratterizzati da temperature di sinterizzazione inferiori e superiori alla temperatura di cristallizzazione del materiale. Le analisi elastiche svolte sugli scaffold in modo computazionale hanno permesso di determinare il modulo elastico normalizzato degli scaffold. I moduli elastici normalizzati ottenuti sono stati confrontati con le proprietà morfometriche, per identificare una relazione tra i diversi parametri determinati. È stata cercata in particolare una relazione tra il modulo elastico normalizzato dei dispositivi e il parametro strutturale di porosità, sulla base di modelli proposti in letteratura. Sono state eseguite prove di nanoindentazione su provini di materiale caratterizzati dalle stesse temperature di sinterizzazione degli scaffold in analisi. Sono state utilizzate diverse punte per indentare il materiale: - punta Berkovich, per determinare il modulo elastico e la durezza - punta cube corner, per determinare il parametro di tenacità - punta sferica, per stimare il valore dello sforzo di rottura Sulla base del modulo elastico del materiale e del modulo elastico normalizzato, è stato determinato il modulo elastico relativo agli scaffold. La stima del valore di sforzo di rottura è avvenuta parallelamente sulla base di simulazioni computazionali e in relazione al parametro di tenacità. È stato ricavato un intervallo di valori accettabili per descrivere la resistenza del materiale al fenomeno di rottura; l’intervallo determinato risulta essere valido in modo indipendente rispetto alla temperatura di sinterizzazione. Risultano essere necessarie ulteriori analisi in merito alle proprietà meccaniche del materiale, in modo specifico relativamente ai valori di tenacità e sforzo di rottura, per ridurre l’intervallo di valori affinati e valutare una possibile correlazione tra i valori determinati e la temperatura di sinterizzazione. Le simulazioni di rottura degli scaffold hanno permesso di identificare l’andamento delle fratture all’interno delle strutture e di stimare i valori degli sforzi di rottura normalizzati. L’obiettivo principale del seguente lavoro è di ottenere una caratterizzazione completa ed esaustiva degli scaffold in analisi. Questo processo permetterà di ottenere dati importanti per generare e convalidare un modello numerico, il cui obiettivo è l'accurata progettazione di scaffold ossei, inclusa una valutazione dell’effetto, dal punto di vista morfometrico e meccanico, della temperatura di sinterizzazione utilizzata durante il processo di fabbricazione. Questo porterebbe all’identificazione di quali parametri di progetto permettono di ottenere caratteristiche desiderate dal punto di vista meccanico e morfometrico.
Analisi e modellazione di Scaffold in vetro ceramica
De CET, ANNA
2020/2021
Abstract
Tissue Engineering often utilizes bone scaffolds to aid the regeneration process of bone tissue if pathologies or traumatic injuries prevent its autonomous regeneration. The present work analyzes scaffolds made up of a bioactive glass-ceramic material, named 47.5B, which was designed and produced by Politecnico di Torino. The scaffolds have been produced utilizing six different syntherization temperatures, with a minimum temperature of 600°C and a maximum temperature of 850°C, during the fabrication process; in particular, the range of temperatures considered includes the crystallization temperature of the material, circa 690°C. To determine the influence of the syntherization temperature on the structural and mechanical properties of the scaffolds obtained, analysis on multiple scaffolds were operated, both computationally to characterize them from a mechanical point of view, both through experimental tests on bulk samples of the material, one for every syntherization temperature. In particular, the following characteristics were analyzed: - the morphological properties of scaffolds, - elastic characteristics of the structures, - mechanical properties of the bulk material, - resistance to rupture of the scaffolds. The analysis operated on the scaffolds are based on μ-CT scans, which have allowed for the reconstruction of the structure of selected volumes of interest. The morphometric properties that were analyzed are the following: porosity, degree of anisotropy, average trabecular thickness, average pore dimension and permeability. Following these observations, it was possible to characterize the scaffold; in particular a distinction was found between scaffolds characterized by a syntherization temperature higher and lower than the crystallization temperature of the material. The elastic analysis, which was operated on computational reconstructions of the different scaffolds, allowed for the determination of the normalized elastic modulus of the scaffolds. The normalized elastic moduluses of each scaffold were compared to their different morphometric properties, in order to determine a possible correlation between the obtained parameters. In particular, a relation between the normalized elastic modulus and the porosity was inspected, on the basis of models found in literature. Nanoindentation tests were carried out on samples of bulk material, each sample characterized by the same syntherization temperatures of the scaffolds. Different indenters were used to perform the nanoindentation tests: - Berkovich indenter, to determine the elastic modulus and the hardness of the material, - cube corner indenter, to determine the toughness parameter, - spheric indenter, to estimate a value for the material’s strength. The elastic modulus of the scaffolds was determined on the basis of the elastic modulus of the material and the normalized elastic modulus. In order to estimate the material’s strength, two analysis were conducted simultaneously: one computational and one in relation to the toughness parameter. An interval of acceptable values was determined, in order to describe the material’s resistance to fracture generation; the range was found to not be dependent on the syntherization temperatures. Further analysis regarding the mechanical properties of the material are necessary, specifically in regards to the toughness and strength of the material, in order to affine the interval of values that has been determined, and to find a possible correlation between the refined intervals and the syntherization temperatures. The strength analysis of the scaffolds allowed for the visualization of fracture propagation inside the structures, and also allowed for the determination of estimated values for the normalized strength of the scaffolds. The main objective of the following work is to obtain a complete and thorough characterization of the scaffolds in analysis. This will provide data relevant for the creation and validation of a numerical model to properly design scaffolds, including an evaluation of the effects, from a morphometric and mechanical point of view, of the syntherization temperature utilized during the fabrication process. This would enable the identification of which design parameters allow for the obtainment of the desired mechanical and morphometric characteristics in the scaffolds being produced.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary___De_Cet_Anna.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
841.11 kB
Formato
Adobe PDF
|
841.11 kB | Adobe PDF | Visualizza/Apri |
Analisi_e_Modellazione_di_Scaffold_in_Vetro_Ceramica___De_Cet.pdf
accessibile in internet per tutti
Descrizione: Elaborato
Dimensione
14.34 MB
Formato
Adobe PDF
|
14.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/188341