In recent decades, the global energy scenario has faced multiple changes that include the transition from conventional fossil to more sustainable fuels. In this context, the advent of non-programmable renewable sources (NPRS) to generate electricity such as solar and wind, has certainly represented a turning point. However, the uncertainty of these sources implies problems of their management and integration in the grid and in the electricity market. For this reason, in recent years, the integration of storage systems capable of mitigating this difficulty has been much discussed and studied. Among the many solutions currently only few can provide large-scale and long-term accumulation. They are the Pumped Hydro Storage (PHS), Compressed Air Energy Storage systems (CAES) and chemical storage (e.g., Hydrogen ). If the PHS constitutes a technology already exploited to its full potential, the CAES instead represents a solution with a high margin for improvement on several aspects: 1) the transition from diabatic system to adiabatic system through the adoption of thermal storage systems; 2) the use of submarine accumulators instead of terrestrial cave. By combining these two solutions comes the concept of underwater adiabatic CAES (UW-CAES). In this thesis, the UW-CAES coupled with an offshore wind farm is analyzed. The adoption of a floating park represents the trend of recent years of research and study towards marine renewable sources. Therefore, the combined system is investigated starting from the sizing of the submarine components, such as air storage and pipeline, and then proceed with a detailed economic analysis through the development of an Excel model. This model is applied to analyze future possible applications of a UW-CAES system in the Italian seas. Subsequently a comparison between theoretical results and real ones given by a reliable wind production profile is performed to identify the limits of the model.
Negli ultimi decenni lo scenario energetico mondiale ha affrontato molteplici cambiamenti che includono il passaggio dalle risorse energetiche convenzionali a quelle sostenibili. In questo contesto, l’avvento delle fonti rinnovabili non programmabili per la produzione di elettricità come solare ed eolico è sicuramente protagonista. Tuttavia, l’incertezza di tali fonti implica problemi di gestione e integrazione delle stesse nella rete e nel mercato elettrico. Pertanto, è stata investigata l’implementazione di sistemi di accumulo in grado di mitigare questa difficoltà. Attualmente solo poche soluzioni sono in grado di fornire un accumulo su larga scala e nel lungo periodo. Esse sono il pompaggio idrico, l’accumulo di aria compressa (CAES) e gli accumuli chimici (e.g., Idrogeno). Se il pompaggio costituisce una tecnologia già sfruttata al massimo delle sue potenzialità, l’accumulo di aria compressa presenta invece un elevato margine di miglioramento su: 1) il passaggio da sistemi diabatici a sistemi adiabatici attraverso l’adozione di accumuli termici; 2) l’utilizzo di accumuli sottomarini anziché terrestri. Combinando queste due soluzioni nasce il concetto di CAES adiabatico sottomarino (UW-CAES). In questo lavoro di tesi tale sistema accoppiato ad un parco eolico offshore viene analizzato. L’adozione di un parco galleggiante rappresenta la tendenza degli ultimi anni di ricerca e studio verso fonti rinnovabili marine. Il sistema combinato viene investigato partendo da un dimensionamento delle componenti sottomarine, quali accumulo di aria e condotta, per poi procedere con un’analisi economica dettagliata attraverso lo sviluppo di un modello Excel. Tale modello è poi usato per analizzare possibili applicazioni di un sistema UW-CAES nei mari italiani. Successivamente, un confronto tra i dati teorici ottenuti e quelli reali ricavati da un profilo di produzione ventosa affidabile viene realizzato così da individuare i limiti presenti nel modello.
Techno-economic assessment of underwater compressed air energy storage coupled with offshore floating wind farms
Galli, Chiara
2020/2021
Abstract
In recent decades, the global energy scenario has faced multiple changes that include the transition from conventional fossil to more sustainable fuels. In this context, the advent of non-programmable renewable sources (NPRS) to generate electricity such as solar and wind, has certainly represented a turning point. However, the uncertainty of these sources implies problems of their management and integration in the grid and in the electricity market. For this reason, in recent years, the integration of storage systems capable of mitigating this difficulty has been much discussed and studied. Among the many solutions currently only few can provide large-scale and long-term accumulation. They are the Pumped Hydro Storage (PHS), Compressed Air Energy Storage systems (CAES) and chemical storage (e.g., Hydrogen ). If the PHS constitutes a technology already exploited to its full potential, the CAES instead represents a solution with a high margin for improvement on several aspects: 1) the transition from diabatic system to adiabatic system through the adoption of thermal storage systems; 2) the use of submarine accumulators instead of terrestrial cave. By combining these two solutions comes the concept of underwater adiabatic CAES (UW-CAES). In this thesis, the UW-CAES coupled with an offshore wind farm is analyzed. The adoption of a floating park represents the trend of recent years of research and study towards marine renewable sources. Therefore, the combined system is investigated starting from the sizing of the submarine components, such as air storage and pipeline, and then proceed with a detailed economic analysis through the development of an Excel model. This model is applied to analyze future possible applications of a UW-CAES system in the Italian seas. Subsequently a comparison between theoretical results and real ones given by a reliable wind production profile is performed to identify the limits of the model.File | Dimensione | Formato | |
---|---|---|---|
Executive_Summary - UW-CAES.pdf
accessibile in internet per tutti
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
Thesis- UW CAES.pdf
accessibile in internet per tutti
Dimensione
6.46 MB
Formato
Adobe PDF
|
6.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/188368