The undoubtful reliance of the productive sectors on fossil fuels and the consequent anthropogenic carbon dioxide emissions are contributing to the ecosystem equilibrium destabilization. Among the possible alternatives to reduce the carbon dioxide impact on the climate change, the catalytic CO2 hydrogenation to valuable products is a promising solution in the framework of Carbon Capture and Utilization (CCU). The rising light olefins market, as chemicals underpinning the polymer industry, has driven the analysis towards the synthesis of such products from CO2. The catalytic system under analysis converts carbon dioxide into light C2-C4 olefins through the methanol-mediated route. Indeed, the catalytic system combines two different catalysts: one for the CO2 hydrogenation to methanol (CTM reaction) and one for the methanol conversion to olefins (MTO reaction), in a single reactive bed. The second step (MTO) is already performed at the industrial scale, whereas the first one (CTM) is far from being considered a fully developed technology. The two steps, and so the catalysts reactivities, demand different conditions: the CTM reaction is typically carried out around 20 [bar] and 300 [°C], whereas MTO is performed at lower pressure (< 5 [bar]) and higher temperatures (400-550 [°C]). Therefore, the bifunctional catalyst has to work in a narrow operating window. As well as for the working condition, also the interaction between the CTM and MTO catalysts is a parameter of fundamental importance. Indeed, different catalytic bed dispositions, integration manners and compositions have been tested, varying the operative temperature, pressure and feed gas spatial velocity. The system showing the best-achieved experimental performance is the bifunctional catalyst which combines the coprecipitated In2O3-ZrO2 (CTM function) and SAPO-34 (MTO function). The conditions that experimentally give rise to the highest light olefins yields are a temperature of 380 [°C], pressure of 38 [barg] and feed gas spatial velocity of 3 [Nl/h/gcatCTM]. Specifically, in the mixed bed with a 1:1 weight ratio between the catalysts, a CO2 conversion of around 35 [%], with CO and CH4 selectivities of 60 and below 5 [%] are found. The 50 [%] of the C2+ products are C2-C4 olefins, with yields up to 7 [%]. C2-C4 paraffins take the remaining 50 [%] of the C2+ distribution. Minor quantities of heavier C5+ hydrocarbons are detected. Starting from the obtained products mixture, a preliminary process design has been performed. This activity has aimed at designing a feasible process scheme to separate the valuable olefins from the unconverted reactants, as well as from the by-products. This design can give fundamental insights into the best sought catalytic reactivity, based on the process response and criticalities. This can allow to tune the catalytic system to maximize the process performance and thus speed up a possible future industrial scale-up. A comparison between the proposed 1-step process, based on the observed experimental performance of the bifunctional catalyst, and the 2-step process, based on literature data and involving CTM and MTO sections in two separate processes, is given. Regarding the section needed to obtain the C2+ olefins and paraffins mixture, the proposed 1-step process requires 39 pieces of equipment; the 2-step process 51 instead. This represents an advantage for the 1-step process in terms of simplicity and CAPEX. On the other hand, the light olefins yield observed for the bifunctional catalyst (1-step process) is between 2 and 7 [%], with respect to the calculated yield for the series of CTM and MTO sections (2-step process) between 4 and 8 [%]. Moreover, utilities specific consumption per unit of valuable light olefins, as electricity, cooling water, and steam, are more than 12, 1.2, and 2.7 times higher for the 1-step process respectively. Further catalyst and process design synergic developments could help to improve the competitiveness of the direct CO2 conversion to light olefins.
L’innegabile dipendenza dei settori produttivi dai combustibili fossili e le conseguenti emissioni di diossido di carbonio generate da attività antropiche, contribuiscono alla destabilizzazione degli equilibri ecosistemici. Tra le differenti alternative per ridurre l’impatto delle emissioni di CO2 sul cambiamento climatico, l'idrogenazione catalitica della CO2 a prodotti con più alto valore aggiunto è una soluzione promettente in ottica di Cattura ed Utilizzo del Carbonio (CCU). La vitalità del mercato delle olefine leggere, intermedi alla base dell’industria dei polimeri, ha condotto l’analisi verso la sintesi di tali prodotti da CO2. Il sistema catalitico in esame svolge la conversione di CO2 a olefine leggere C2-C4, attraverso il meccanismo mediato dalla sintesi di metanolo. Il sistema catalitico combina due catalizzatori differenti: il primo idrogena la CO2 a metanolo (reazione CTM) ed il secondo converte il metanolo a olefine (reazione MTO), nello stesso letto catalitico. Il secondo step di reazione (MTO) è tipicamente impiegato su scala industriale, mentre il primo (CTM) è lontano dall’essere considerato una tecnologia consolidata. I due passaggi, e dunque le reattività dei due catalizzatori, richiedono condizioni differenti: la reazione CTM è condotta a pressioni e temperature di circa 20 [bar] e 300 [°C]; la reazione MTO a pressioni più basse (< 5 [bar]) e temperature più alte (400-550 [°C]). Il catalizzatore bifunzionale deve, pertanto, attenersi ad un piuttosto stretto intervallo di operatività. Come le condizioni di lavoro, anche l’interazione tra i catalizzatori CTM ed MTO è un parametro di fondamentale importanza. Differenti disposizioni, metodi di integrazione e composizioni del letto catalitico sono state testate, variando temperature, pressioni e velocità spaziali del gas alimentato. Il sistema che riporta le migliori prestazioni sperimentali è il catalizzatore bifunzionale che combina In2O3-ZrO2 coprecipitato, con funzione CTM, e SAPO-34, con funzione MTO. Le condizioni in cui si ottengono le più alte rese a olefine leggere sono ad una temperatura di 380 [°C], pressione di 38 [barg] e velocità spaziale del gas in ingresso di 3 [Nl/h/gcatCTM]. Nello specifico, nel letto miscelato con un rapporto in peso tra i due catalizzatori di 1:1, sono state ottenute conversioni di CO2 del 35 [%], con selettività a CO e CH4 del 60 e inferiori al 5 [%], rispettivamente. Le olefine leggere C2-C4 costituiscono il 50 [%] del totale della distribuzione di idrocarburi C2+, con rese fino al 7 [%]. Le paraffine C2-C4 costituiscono il restante 50 [%] della distribuzione C2+. Gli idrocarburi più pesanti C5+ sono stati rilevati in quantità minori. A partire dalla miscela di prodotti ottenuti, è stato sviluppato uno schema di processo. L’obbiettivo di tale attività è stato di progettare un processo tecnicamente fattibile, che sia in grado di separare i prodotti di interesse dai reagenti non convertiti e dai sottoprodotti. Tale progettazione può fornire indicazioni importanti sulle prestazioni catalitiche da perseguire, sulla base delle prestazioni del processo. Questo può coadiuvare la futura ricerca sul sistema catalitico ed accelerarne l’applicazione industriale. È inoltre fornita la comparazione tra il processo 1-step proposto, basato sulle prestazioni sperimentali del catalizzatore bifunzionale, ed il processo 2-step, basato su dati di letteratura e dove le reazioni CTM e MTO si esplicano in due sezioni distinte. Considerando la sezione di impianto necessaria all’ottenimento della miscela di olefine e paraffine C2+, il processo 1-step richiede 39 apparecchiature contro le 51 del processo 2-step. Questo costituisce un vantaggio per il processo 1-step in termini di semplicità e CAPEX. Tuttavia, la resa ottenuta di olefine leggere è tra il 2 ed il 7 [%] per il sistema catalitico combinato (processo 1-step) e stimata tra il 4 e 8 [%] per la combinazione in serie delle sezioni CTM e MTO (processo 2-step). Inoltre, il consumo specifico di ausiliari per unità di prodotto di interesse, come elettricità, acqua di raffreddamento e vapore, è circa 12, 1.2 e 2.7 volte maggiore per il processo 1-step rispetto al processo 2-step. Ulteriori sinergici sviluppi del catalizzatore e del design di processo, possono rendere la conversione diretta della CO2 a olefine maggiormente competitiva.
Carbon dioxide hydrogenation to light olefins : catalytic tests and preliminary process design
Calisse, Alessandro;Cernuschi, Christian
2020/2021
Abstract
The undoubtful reliance of the productive sectors on fossil fuels and the consequent anthropogenic carbon dioxide emissions are contributing to the ecosystem equilibrium destabilization. Among the possible alternatives to reduce the carbon dioxide impact on the climate change, the catalytic CO2 hydrogenation to valuable products is a promising solution in the framework of Carbon Capture and Utilization (CCU). The rising light olefins market, as chemicals underpinning the polymer industry, has driven the analysis towards the synthesis of such products from CO2. The catalytic system under analysis converts carbon dioxide into light C2-C4 olefins through the methanol-mediated route. Indeed, the catalytic system combines two different catalysts: one for the CO2 hydrogenation to methanol (CTM reaction) and one for the methanol conversion to olefins (MTO reaction), in a single reactive bed. The second step (MTO) is already performed at the industrial scale, whereas the first one (CTM) is far from being considered a fully developed technology. The two steps, and so the catalysts reactivities, demand different conditions: the CTM reaction is typically carried out around 20 [bar] and 300 [°C], whereas MTO is performed at lower pressure (< 5 [bar]) and higher temperatures (400-550 [°C]). Therefore, the bifunctional catalyst has to work in a narrow operating window. As well as for the working condition, also the interaction between the CTM and MTO catalysts is a parameter of fundamental importance. Indeed, different catalytic bed dispositions, integration manners and compositions have been tested, varying the operative temperature, pressure and feed gas spatial velocity. The system showing the best-achieved experimental performance is the bifunctional catalyst which combines the coprecipitated In2O3-ZrO2 (CTM function) and SAPO-34 (MTO function). The conditions that experimentally give rise to the highest light olefins yields are a temperature of 380 [°C], pressure of 38 [barg] and feed gas spatial velocity of 3 [Nl/h/gcatCTM]. Specifically, in the mixed bed with a 1:1 weight ratio between the catalysts, a CO2 conversion of around 35 [%], with CO and CH4 selectivities of 60 and below 5 [%] are found. The 50 [%] of the C2+ products are C2-C4 olefins, with yields up to 7 [%]. C2-C4 paraffins take the remaining 50 [%] of the C2+ distribution. Minor quantities of heavier C5+ hydrocarbons are detected. Starting from the obtained products mixture, a preliminary process design has been performed. This activity has aimed at designing a feasible process scheme to separate the valuable olefins from the unconverted reactants, as well as from the by-products. This design can give fundamental insights into the best sought catalytic reactivity, based on the process response and criticalities. This can allow to tune the catalytic system to maximize the process performance and thus speed up a possible future industrial scale-up. A comparison between the proposed 1-step process, based on the observed experimental performance of the bifunctional catalyst, and the 2-step process, based on literature data and involving CTM and MTO sections in two separate processes, is given. Regarding the section needed to obtain the C2+ olefins and paraffins mixture, the proposed 1-step process requires 39 pieces of equipment; the 2-step process 51 instead. This represents an advantage for the 1-step process in terms of simplicity and CAPEX. On the other hand, the light olefins yield observed for the bifunctional catalyst (1-step process) is between 2 and 7 [%], with respect to the calculated yield for the series of CTM and MTO sections (2-step process) between 4 and 8 [%]. Moreover, utilities specific consumption per unit of valuable light olefins, as electricity, cooling water, and steam, are more than 12, 1.2, and 2.7 times higher for the 1-step process respectively. Further catalyst and process design synergic developments could help to improve the competitiveness of the direct CO2 conversion to light olefins.File | Dimensione | Formato | |
---|---|---|---|
aprile_2022_Calisse_Cernuschi.pdf
non accessibile
Descrizione: Tesi_and_Executive_Summary
Dimensione
14.05 MB
Formato
Adobe PDF
|
14.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/188433