The main renewable energy sources, such as solar and wind energy, are intrinsically prone to intermittency, which precludes reliable and continuous electricity generation. Therefore, energy market decarbonisation requires more and more devices able to store green energy and to exploit it when necessary. In this field, redox flow batteries, which are electrochemical devices mainly employed in stationary applications, play an important role. This project focuses on an aqueous redox flow battery with a polysulfide-based electrolyte, which requires an electrocatalyst to boost redox reaction kinetics. In this thesis, the catalytic material was integrated in a novel way inside the device, i.e. through the decoration of the membrane that divides the two battery half-cells. Thus, particles based on graphene and different sulfides (Co, Ni, Fe and their combinations) were synthesised through hydrothermal treatment and then applied on the membrane. Catalytic activity was evaluated by cyclic voltammetry in a three-electrode set-up and by charge and discharge cycles in a flow cell. In literature, quite limited on this subject, cobalt sulfide is considered the best catalyst for polysulfides redox reactions. Since cobalt is a metal globally known as a critical raw material, the aim of this experimental work is to reduce its content, properly tuning catalytic material formulation. Consequently, alternative low cobalt content materials were investigated and characterised, assessing their catalytic activity. In this way, it has been verified that membrane decoration, a highly innovative method, effectively catalyses polysulfide redox reactions. Furthermore, different catalytic particle formulations were identified, which turned out to be more performing than only Co-based ones.
Le principali fonti rinnovabili, quali fotovoltaico ed eolico, sono caratterizzate da un’intrinseca disponibilità a intermittenza, che preclude la generazione di elettricità affidabile e continuativa. Dunque, la decarbonizzazione del mercato energetico passa necessariamente dalla diffusione di dispositivi in grado di accumulare tale energia pulita e sfruttarla quando necessario. In questo ambito trovano sempre più spazio le batterie a flusso, dispositivi elettrochimici principalmente utilizzati in applicazioni stazionarie. Questo progetto si focalizza su una batteria a flusso acquosa con un elettrolita a base di polisolfuri, il quale necessita di un catalizzatore in grado di accelerare la cinetica di ossido-riduzione dell’elettrolita. In questa tesi il catalizzatore è stato integrato in modo innovativo all’interno del dispositivo, ossia tramite la decorazione della membrana che separa le due semi-celle della batteria. Sono state quindi sintetizzate delle particelle di grafene e vari solfuri (Co, Ni, Fe, e loro combinazioni) tramite hydrothermal, le quali sono state poi applicate alla membrana. L’attività catalitica è stata valutata tramite ciclovoltametrie in una cella a tre elettrodi e tramite cicli di carica e scarica in una cella a flusso. Da letteratura, piuttosto limitata sull’argomento, il solfuro di cobalto risulta essere il miglior catalizzatore per l’ossido-riduzione dei polisolfuri. Essendo però il cobalto un metallo riconosciuto a livello globale come materia prima critica, l’obiettivo dell’attività sperimentale descritta è stata la diminuzione del suo contenuto, affinando appropriatamente la formulazione del materiale catalitico. Dunque, sono stati investigati e caratterizzati materiali alternativi a basso contenuto di cobalto valutandone l’attività catalitica. Si è dunque verificato che la decorazione della membrana, metodo altamente innovativo, risulta catalizzare efficacemente le reazioni di ossido-riduzione dei polisolfuri. Inoltre, sono state identificate diverse formulazioni di particelle catalitiche, che risultano più performanti delle particelle a base di solo cobalto.
Decorated membranes for aqueous polysulfide redox flow batteries
Di MARI, LUCIANO
2021/2022
Abstract
The main renewable energy sources, such as solar and wind energy, are intrinsically prone to intermittency, which precludes reliable and continuous electricity generation. Therefore, energy market decarbonisation requires more and more devices able to store green energy and to exploit it when necessary. In this field, redox flow batteries, which are electrochemical devices mainly employed in stationary applications, play an important role. This project focuses on an aqueous redox flow battery with a polysulfide-based electrolyte, which requires an electrocatalyst to boost redox reaction kinetics. In this thesis, the catalytic material was integrated in a novel way inside the device, i.e. through the decoration of the membrane that divides the two battery half-cells. Thus, particles based on graphene and different sulfides (Co, Ni, Fe and their combinations) were synthesised through hydrothermal treatment and then applied on the membrane. Catalytic activity was evaluated by cyclic voltammetry in a three-electrode set-up and by charge and discharge cycles in a flow cell. In literature, quite limited on this subject, cobalt sulfide is considered the best catalyst for polysulfides redox reactions. Since cobalt is a metal globally known as a critical raw material, the aim of this experimental work is to reduce its content, properly tuning catalytic material formulation. Consequently, alternative low cobalt content materials were investigated and characterised, assessing their catalytic activity. In this way, it has been verified that membrane decoration, a highly innovative method, effectively catalyses polysulfide redox reactions. Furthermore, different catalytic particle formulations were identified, which turned out to be more performing than only Co-based ones.File | Dimensione | Formato | |
---|---|---|---|
Decorated membranes for aqueous polysulfide redox flow batteries.pdf
non accessibile
Dimensione
10.89 MB
Formato
Adobe PDF
|
10.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/188906