19Fluorine Magnetic Resonance Imaging (19F-MRI) has gained interest for molecular imaging and cell tracking as the MR-signal is directly related to the number of fluorinated moieties and is highly specific due to the absence of biological background. Along with the traditional proton MRI (1H-MRI), it can provide hot spot imaging. It is highly attractive as clinical diagnostic tool due to its ability to provide in-depth in vivo quantification without the use of radioactive agents. However, given omniphobic nature of fluorine, there is a growing need to develop appropriate delivery systems for dispersing fluorinated probes in physiological conditions. In fact, efficient 19F-MRI probes should ideally bear as higher as possible number of magnetically equivalent F atoms in order to give a strong single signal. In this regard, one of the most effective 19F-MRI probes is a branched molecule, called PERFECTA, that contains 36 magnetically equivalent F atoms. In this thesis, two different formulations of PERFECTA have been developed and characterized showing their potential use for biomedical applications. Moreover, dual imaging probes based on PERFECTA have been synthesized, formulated and characterized in terms of their fluorescence and 19F-NMR response. In the first formulation, a film-forming protein that behaves as a biosurfactant, hydrophobin (HFBII), was used to coat solid nanoparticles (NPs) made of PERFECTA. A sustainable and simple method was developed to invert the philicity of PERFECTA NP surface by formation of a rigid protein monolayer that is also retained in biological environment. This is the first reported monodisperse, solid superfluorinated 19F-MRI probe, possessing excellent magnetic properties. The hydrophobin stabilized PERFECTA nanoparticles (HFBII-NPs) were fully characterized in terms of morphology, magnetic properties, colloidal stability, protein corona formation, cellular viability, and imaging performance. Extracellular vesicles (EVs) are currently being developed as biocompatible, efficient delivery vectors due to its role in cell-cell communication. To follow EV biogenesis, release, accumulation and distribution, there is a growing demand for in vivo EV imaging tools. Hence, the first model of hybrid EVs from mesenchymal stem cells (MSCs) and murine melanoma cell line (B16-F10s), containing PERFECTA was developed. The fluorinated EVs, produced by manipulating EV biogenesis pathway, exhibit an intense 19F signal and excellent 19F relaxation times and yet maintain physico-chemical features, morphology and biological fingerprint as native EVs. Fluorinated EVs from MSCs also retain the tumor homing properties of native MSC EVs as visualized by in vivo 19F-MRI of tumor bearing mice. Finally, an attempt was made to develop multimodal imaging probes by combining the excellent magnetic properties of PERFECTA with the photoluminescent properties of organic BODIPY fluorophore dye. Solid state characterization of these dyes by x-ray crystallography and NMR was carried out to understand their structure. The photochemical properties of the dyes were measured by fluorescent quantum yield. Finally, an aqueous dispersion of these fluorinated BODIPY dyes was developed using well-known polymer poly(lactic-co-glycolic acid) (PLGA) and pluronic F68 surfactant. The effect of addition of a second perfluorinated liquid PFCE was also studied.
L'imaging a risonanza magnetica al fluoro (19F-MRI) ha guadagnato interesse per l'imaging molecolare e il tracciamento cellulare poiché il segnale MR è direttamente correlato al numero di frazioni fluorurate ed è altamente specifico a causa dell'assenza di background biologico. Insieme alla tradizionale risonanza magnetica protonica (1H-MRI), può fornire immagini hot spot. È molto interessante come strumento diagnostico clinico grazie alla sua capacità di fornire una quantificazione in vivo approfondita senza l'uso di agenti radioattivi. Tuttavia, data la natura onnifobica del fluoro, vi è una crescente necessità di sviluppare sistemi di somministrazione appropriati per disperdere le sonde fluorurate in condizioni fisiologiche. In effetti, sonde 19F-MRI efficienti dovrebbero idealmente avere il maggior numero possibile di atomi F magneticamente equivalenti per fornire un segnale singolo forte. A questo proposito, una delle sonde 19F-MRI più efficaci è una molecola ramificata, chiamata PERFECTA, che contiene 36 atomi di F magneticamente equivalenti. In questa tesi sono state sviluppate e caratterizzate due diverse formulazioni di PERFECTA che ne mostrano il potenziale utilizzo per applicazioni biomediche. Inoltre, sono state sintetizzate, formulate e caratterizzate sonde dual imaging basate su PERFECTA in termini di fluorescenza e risposta 19F-NMR. Nella prima formulazione, una proteina filmogena che si comporta come un biotensioattivo, l'idrofobina (HFBII), è stata utilizzata per rivestire nanoparticelle solide (NP) fatte di PERFECTA. È stato sviluppato un metodo semplice e sostenibile per invertire la filicità della superficie di PERFECTA NP mediante la formazione di un monostrato proteico rigido che viene trattenuto anche nell'ambiente biologico. Questa è un primo esempio di sonda 19F-MRI superfluorurata solida monodispersa, dotata di eccellenti proprietà magnetiche. Le PERFECTA NP stabilizzate con idrofobina (HFBII-NPs) sono state completamente caratterizzate in termini di morfologia, proprietà magnetiche, stabilità colloidale, formazione di corona proteica, vitalità cellulare e prestazioni di imaging. Le vescicole extracellulari (EV) sono attualmente in fase di sviluppo come vettori biocompatibili ed efficienti grazie al loro ruolo nelle interazioni cellula-cellula. Per seguire la biogenesi, il rilascio, l'accumulo e la distribuzione di EV, c'è una crescente domanda di strumenti di imaging EV in vivo. Quindi, in questo lavoro è stato sviluppato un primo modello di EV ibride contenenti PERFECTA ottenute da cellule staminali mesenchimali (MSC) e di melanoma murino (B16-F10s). Tali EV fluorurate, prodotte manipolando il percorso di biogenesi delle EV, mostrano un intenso segnale 19F ed eccellenti tempi di rilassamento 19F, pur mantenendo le caratteristiche fisico-chimiche, la morfologia e l'impronta biologica delle EV native. Le EV fluorurate ottenute dalle MSC mantengono anche le proprietà di homing del tumore dei veicoli delle EV native come visualizzato tramite 19F-MRI in vivo modelli di tumore murino. Infine, si è tentato di sviluppare sonde di imaging multimodali combinando le eccellenti proprietà magnetiche di PERFECTA con le proprietà fotoluminescenti del colorante fluoroforo BODIPY organico. La caratterizzazione allo stato solido di questi coloranti mediante cristallografia a raggi X è stata effettuata per comprendere la loro struttura. Le proprietà fotochimiche dei coloranti sono state misurate mediante resa quantica fluorescente. Infine, è stata sviluppata una dispersione acquosa di questi coloranti BODIPY fluorurati utilizzando il noto polimero poli(acido lattico-co-glicolico) (PLGA) e tensioattivo pluronico F68. È stato anche studiato l'effetto dell'aggiunta di un secondo PFCE liquido perfluorurato sulle loro proprietà.
Development and optimization of 19F-MRI probes for medical imaging
AYAZ, NAZEEHA
2021/2022
Abstract
19Fluorine Magnetic Resonance Imaging (19F-MRI) has gained interest for molecular imaging and cell tracking as the MR-signal is directly related to the number of fluorinated moieties and is highly specific due to the absence of biological background. Along with the traditional proton MRI (1H-MRI), it can provide hot spot imaging. It is highly attractive as clinical diagnostic tool due to its ability to provide in-depth in vivo quantification without the use of radioactive agents. However, given omniphobic nature of fluorine, there is a growing need to develop appropriate delivery systems for dispersing fluorinated probes in physiological conditions. In fact, efficient 19F-MRI probes should ideally bear as higher as possible number of magnetically equivalent F atoms in order to give a strong single signal. In this regard, one of the most effective 19F-MRI probes is a branched molecule, called PERFECTA, that contains 36 magnetically equivalent F atoms. In this thesis, two different formulations of PERFECTA have been developed and characterized showing their potential use for biomedical applications. Moreover, dual imaging probes based on PERFECTA have been synthesized, formulated and characterized in terms of their fluorescence and 19F-NMR response. In the first formulation, a film-forming protein that behaves as a biosurfactant, hydrophobin (HFBII), was used to coat solid nanoparticles (NPs) made of PERFECTA. A sustainable and simple method was developed to invert the philicity of PERFECTA NP surface by formation of a rigid protein monolayer that is also retained in biological environment. This is the first reported monodisperse, solid superfluorinated 19F-MRI probe, possessing excellent magnetic properties. The hydrophobin stabilized PERFECTA nanoparticles (HFBII-NPs) were fully characterized in terms of morphology, magnetic properties, colloidal stability, protein corona formation, cellular viability, and imaging performance. Extracellular vesicles (EVs) are currently being developed as biocompatible, efficient delivery vectors due to its role in cell-cell communication. To follow EV biogenesis, release, accumulation and distribution, there is a growing demand for in vivo EV imaging tools. Hence, the first model of hybrid EVs from mesenchymal stem cells (MSCs) and murine melanoma cell line (B16-F10s), containing PERFECTA was developed. The fluorinated EVs, produced by manipulating EV biogenesis pathway, exhibit an intense 19F signal and excellent 19F relaxation times and yet maintain physico-chemical features, morphology and biological fingerprint as native EVs. Fluorinated EVs from MSCs also retain the tumor homing properties of native MSC EVs as visualized by in vivo 19F-MRI of tumor bearing mice. Finally, an attempt was made to develop multimodal imaging probes by combining the excellent magnetic properties of PERFECTA with the photoluminescent properties of organic BODIPY fluorophore dye. Solid state characterization of these dyes by x-ray crystallography and NMR was carried out to understand their structure. The photochemical properties of the dyes were measured by fluorescent quantum yield. Finally, an aqueous dispersion of these fluorinated BODIPY dyes was developed using well-known polymer poly(lactic-co-glycolic acid) (PLGA) and pluronic F68 surfactant. The effect of addition of a second perfluorinated liquid PFCE was also studied.File | Dimensione | Formato | |
---|---|---|---|
Nazeeha Ayaz_thesis.pdf
solo utenti autorizzati dal 15/07/2023
Dimensione
11.34 MB
Formato
Adobe PDF
|
11.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/189114