In a national context in which energy supply is strongly linked to imports, one of the possible solutions is the use of internal and renewable resources. Among the most developed technologies in recent years, the production of biogas from biomass could play a key role for the energetical sustainability. In this sector, characterized by the presence of plants consisting of standardized elements often arranged in a similar way to each other, the approach dedicated to fire-safety design is often purely normative and does not consider the geographical context in term of climate and surrounding. The aim of the authors is to determine if an in-depth analysis, carried out through IT tools, can allow the prediction of fire/explosion scenarios otherwise difficult to weigh, proposing a milestone for an innovative fire-safety design, based on the engineering approach. Through the formulation of an experimental methodology and using a CFD software for the fluid dynamic modeling of gaseous masses (never used before for these purposes), it is possible to consider different variables such as climatic factors and the characteristic geometries of the plant under analysis and its surroundings, evaluating their interactions. Trying an experimental approach, aided by software, particular attention is paid to the evolution of risk scenarios related to the transition from the on-site conversion of biogas in heat and electricity (cogeneration), to the valorization of biogas by upgrading in order to obtain biomethane for refueling cars and operating machines.
In un contesto nazionale quale quello italiano, in cui l'approvvigionamento energetico è fortemente legato alle importazioni, una delle possibili soluzioni è l'utilizzo di risorse interne e rinnovabili. Tra le tecnologie più sviluppate negli ultimi anni, la produzione di biogas da biomassa potrebbe giocare un ruolo chiave per la sostenibilità energetica. In questo settore, caratterizzato dalla presenza di impianti costituiti da elementi standardizzati spesso disposti in modo simile tra loro, l'approccio dedicato alla progettazione antincendio è spesso puramente normativo e non considera il contesto geografico in termini di clima e ambiente circostante. L'obiettivo degli autori è quello di determinare se un'analisi approfondita, effettuata attraverso strumenti informatici, possa consentire la previsione di scenari di incendio/esplosione altrimenti difficili da prevedere, proponendo una pietra miliare per una progettazione innovativa della sicurezza antincendio, basata sull'approccio ingegneristico. Attraverso la formulazione di una metodologia sperimentale e l'utilizzo di un software CFD per la modellazione fluidodinamica di masse gassose (mai utilizzato prima per questi scopi), è possibile considerare diverse variabili come i fattori climatici e le geometrie caratteristiche dell'impianto in analisi e dei suoi dintorni, valutandone le interazioni. Adottando un approccio sperimentale, coadiuvato da software, particolare attenzione è rivolta all'evoluzione degli scenari di rischio legati al passaggio dalla conversione in loco del biogas in calore ed energia elettrica (cogenerazione), alla valorizzazione del biogas mediante upgrading al fine di ottenere biometano per il rifornimento di auto e macchine operatrici.
Experimental approach to fire-safety engineering - Implementation of fluid dynamics modeling in the explosion risk-analysis for an existing biogas plant
Arrigoni, Silvio;Rossini, Andrea
2021/2022
Abstract
In a national context in which energy supply is strongly linked to imports, one of the possible solutions is the use of internal and renewable resources. Among the most developed technologies in recent years, the production of biogas from biomass could play a key role for the energetical sustainability. In this sector, characterized by the presence of plants consisting of standardized elements often arranged in a similar way to each other, the approach dedicated to fire-safety design is often purely normative and does not consider the geographical context in term of climate and surrounding. The aim of the authors is to determine if an in-depth analysis, carried out through IT tools, can allow the prediction of fire/explosion scenarios otherwise difficult to weigh, proposing a milestone for an innovative fire-safety design, based on the engineering approach. Through the formulation of an experimental methodology and using a CFD software for the fluid dynamic modeling of gaseous masses (never used before for these purposes), it is possible to consider different variables such as climatic factors and the characteristic geometries of the plant under analysis and its surroundings, evaluating their interactions. Trying an experimental approach, aided by software, particular attention is paid to the evolution of risk scenarios related to the transition from the on-site conversion of biogas in heat and electricity (cogeneration), to the valorization of biogas by upgrading in order to obtain biomethane for refueling cars and operating machines.File | Dimensione | Formato | |
---|---|---|---|
2022_7_Arrigoni_Rossini.pdf
solo utenti autorizzati dal 28/06/2023
Descrizione: Tesi di Laurea Magistrale Arrigoni Rossini
Dimensione
10.44 MB
Formato
Adobe PDF
|
10.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/189688