Reducing greenhouse gas emissions to face climate change is one of the most important challenges of this century. During the pandemic of 2020 emissions fell from 36.1 to 34.2 Gt, but quickly rebound in 2021, breaking a new record of 36.3 Gt. In this scenario, harnessing renewable energy is crucial, especially the one coming from the sun. Over the years different technologies proved to be reliable and economically viable, but there are still unsolved problems related to the intermittent and aleatory nature of sunlight, together with the difficult task of electrical energy storage. One alternative pathway is to convert concentrated solar energy into fuels through thermochemical cycles. The main advantage over previous technologies, is that these energy dense fuels, called solar fuels, can be stored, thus allowing for decoupling of production and utilization of energy. These cycles are able to lower the required energy and temperature of the reaction of H2O/CO2 thermolysis, by dividing the overall process into two or more steps. Among the different materials that can realize such reactions, cerium oxide stands out as one of the most promising due to its performances, stability, and abundance. This work of thesis aims at developing a mathematical model to predict the efficiency and fuel production capabilities of a double-loop fluidized bed reactor working with ceria particles. In this system, ceria is cycled back and forth between two fluidized beds: in the first, particles release oxygen by being directly illuminated with concentrated solar radiation, which provides the necessary thermal power to drive the endothermic reduction reaction; in the second, reduced particles, fluidized with H2O/CO2 stream, undergo oxidation, absorbing oxygen and producing H2/CO. The main focus has been on modeling the reduction chamber fluidized bed, which is solved thanks to a vertical discretization and by considering both the thermodynamics and kinetics of ceria reduction reaction. The model is then integrated into the overall system to determine the solar to fuel efficiency that is attainable in different operating conditions.
Ridurre le emissioni di gas serra per affrontare il cambiamento climatico è una delle più importanti sfide del secolo corrente. Durante la pandemia del 2020 le emissioni sono diminuite da 36.1 a 34.2 Gt, ma durante il 2021 sono tornate ai livelli precedenti, con un nuovo record di 36.3 Gt. In questo scenario, sfruttare l’energia rinnovabile, soprattutto quella solare, si rivela di cruciale importanza. Negli anni varie tecnologie si sono dimostrate in grado di convertirla efficacemente ed economicamente, ma vi sono tuttora problemi legati all’intermittenza ed aleatorietà della fonte solare, nonché al difficile accumulo dell’energia elettrica su grande scala. Un’alternativa è la conversione dell’energia solare in combustibili grazie a cicli termochimici. Il vantaggio principale risiede nella possibilità di stoccaggio dei solar fuels, che permetterebbe quindi di disaccoppiare la produzione ed utilizzo dell’energia. I cicli termochimici realizzano la reazione di termolisi di H2O/CO2 in due o più step, abbassando energia e temperatura richieste. Tra i materiali che sono stati considerati per realizzare questi cicli, l’ossido di cerio è uno dei più interessanti per via della sua stabilità, l’abbondanza e la capacità produttiva. L’obiettivo di questa tesi è quindi quello di sviluppare un modello in grado di predire le performance di un sistema a letto fluido double-loop a particelle di cerio. In questo sistema le particelle compiono un ciclo attraversando due letti fluidi: nel primo il cerio libera ossigeno mentre viene illuminato da radiazione solare concentrata, che fornisce il calore necessario per la reazione endotermica di riduzione; nel secondo, le particelle ridotte entrano in contatto con il gas fluidizzante, che è H2O/CO2, e assorbendone l’ossigeno, producono H2/CO. L’attenzione maggiore è stata riservata alla modellizzazione del reattore di riduzione, che viene risolto discretizzandolo verticalmente, e in cui si considerano sia la termodinamica che la cinetica della reazione. Il modello è poi integrato nel sistema complessivo, con lo scopo di determinarne l’efficienza nelle diverse condizioni operative.
Solar fuels production via cerium oxide thermochemical cycle with double-loop fluidized bed reactor
Regis, Michele
2021/2022
Abstract
Reducing greenhouse gas emissions to face climate change is one of the most important challenges of this century. During the pandemic of 2020 emissions fell from 36.1 to 34.2 Gt, but quickly rebound in 2021, breaking a new record of 36.3 Gt. In this scenario, harnessing renewable energy is crucial, especially the one coming from the sun. Over the years different technologies proved to be reliable and economically viable, but there are still unsolved problems related to the intermittent and aleatory nature of sunlight, together with the difficult task of electrical energy storage. One alternative pathway is to convert concentrated solar energy into fuels through thermochemical cycles. The main advantage over previous technologies, is that these energy dense fuels, called solar fuels, can be stored, thus allowing for decoupling of production and utilization of energy. These cycles are able to lower the required energy and temperature of the reaction of H2O/CO2 thermolysis, by dividing the overall process into two or more steps. Among the different materials that can realize such reactions, cerium oxide stands out as one of the most promising due to its performances, stability, and abundance. This work of thesis aims at developing a mathematical model to predict the efficiency and fuel production capabilities of a double-loop fluidized bed reactor working with ceria particles. In this system, ceria is cycled back and forth between two fluidized beds: in the first, particles release oxygen by being directly illuminated with concentrated solar radiation, which provides the necessary thermal power to drive the endothermic reduction reaction; in the second, reduced particles, fluidized with H2O/CO2 stream, undergo oxidation, absorbing oxygen and producing H2/CO. The main focus has been on modeling the reduction chamber fluidized bed, which is solved thanks to a vertical discretization and by considering both the thermodynamics and kinetics of ceria reduction reaction. The model is then integrated into the overall system to determine the solar to fuel efficiency that is attainable in different operating conditions.File | Dimensione | Formato | |
---|---|---|---|
2022_07_Regis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
9.49 MB
Formato
Adobe PDF
|
9.49 MB | Adobe PDF | Visualizza/Apri |
2022_07_Regis_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/189986